
Basic Lisp Techniques

David J. Cooper, Jr.

October 10, 2000

ii

0Copyright c© 2000, Franz Inc. and David J. Cooper, Jr.

Foreword1

Computers, and the software applications that power them, permeate every facet of our
daily lives. From groceries to airline reservations to dental appointments, our reliance on
technology is all-encompassing.

And, we want more. Every day, our expectations of technology and software increase:

• smaller cell phones that surf the net

• better search engines that generate information we actually want

• voice-activated laptops

• cars that know exactly where to go

The list is endless. Unfortunately, there is not an endless supply of programmers and
developers to satisfy our insatiable appetites for new features and gadgets. “Cheap talent”
to help complete the “grunt work” of an application no longer exists. Further, the days
of unlimited funding are over. Investors want to see results, fast. Every day, hundreds of
magazine and on-line articles focus on the time and people resources needed to support
future technological expectations.

Common Lisp (CL) is one of the few languages and development options that can meet
these challenges. Powerful, flexible, changeable on the fly — increasingly, CL is playing
a leading role in areas with complex problem-solving demands. Engineers in the fields of
bioinformatics, scheduling, data mining, document management, B2B, and E-commerce
have all turned to CL to complete their applications on time and within budget. But
CL is no longer just appropriate for the most complex problems. Applications of modest
complexity, but with demanding needs for fast development cycles and customization, are
also ideal candidates for CL.

Other languages have tried to mimic CL, with limited success. Perl, Python, Java,
C++, C# — they all incorporate some of the features that give Lisp its power, but their
implementations tend to be brittle.

The purpose of this book is to showcase the features that make CL so much better
than these imitators, and to give you a “quick-start” guide for using Common Lisp as a
development environment. If you are an experienced programmer in languages other than
Lisp, this guide gives you all the tools you need to begin writing Lisp applications. If you’ve
had some exposure to Lisp in the past, this guide will help refresh those memories and shed
some new light on CL for you.

1this Foreword was authored by Franz Inc.

iii

iv

But be careful, Lisp can be addicting! This is why many Fortune 500 companies will
use nothing else on their 24/7, cutting-edge, mission-critical applications. After reading
this book, trying our software, and experiencing a 3 to 10 times increase in productivity,
we believe you will feel the same way.

Contents

1 Introduction 1
1.1 The Past, Present, and Future of Common Lisp 1

1.1.1 Lisp Yesterday . 1
1.1.2 Lisp Today . 1
1.1.3 Lisp Tomorrow . 2

1.2 Convergence of Hardware and Software . 3
1.3 The CL Model of Computation . 3

2 Operating a CL Development Environment 5
2.1 Installing a CL Environment . 5
2.2 Running CL in a Shell Window . 6

2.2.1 Starting CL from a Terminal Window 6
2.2.2 Stopping CL from a Terminal Window 6

2.3 Running CL inside a Text Editor . 8
2.3.1 A Note on Emacs and Text Editors 8
2.3.2 Emacs Terminology . 8
2.3.3 Starting, Stopping, and Working With CL inside an Emacs Shell . . 9

2.4 Running CL as a subprocess of Emacs . 10
2.4.1 Starting the CL subprocess within Emacs 10
2.4.2 Working with CL as an Emacs subprocess 11
2.4.3 Compiling and Loading a File from an Emacs buffer 12

2.5 Integrated Development Environment . 13
2.6 The User Init File . 13
2.7 Using CL as a scripting language . 14
2.8 Debugging in CL . 15

2.8.1 Common debugger commands . 15
2.8.2 Interpreted vs Compiled Code . 16
2.8.3 Use of (break) and C-c to interrupt 16
2.8.4 Profiling . 17

2.9 Developing Programs and Applications in CL 17
2.9.1 A Layered Approach . 17
2.9.2 Compiling and Loading your Project 17
2.9.3 Creating an Application “Fasl” File 18
2.9.4 Creating an Image File . 19

v

vi CONTENTS

2.9.5 Building Runtime Images . 19
2.9.6 Using an Application Init File . 19

2.10 Using CL with Other Languages and Environments 20
2.10.1 Interfacing with the Operating System 20
2.10.2 Foreign Function Interface . 20
2.10.3 Interfacing with Corba . 21
2.10.4 Custom Socket Connections . 21
2.10.5 Interfacing with Windows (COM, DLL, DDE) 21
2.10.6 Code Generation into Other Languages 23

3 The CL Language 25
3.1 Overview of CL and its Syntax . 25

3.1.1 Evaluation of Arguments to a Function 27
3.1.2 Lisp Syntax Simplicity . 27
3.1.3 Turning Off Evaluation . 28
3.1.4 Fundamental CL Data Types . 29
3.1.5 Functions . 31
3.1.6 Global and Local Variables . 32

3.2 The List as a Data Structure . 34
3.2.1 Accessing the Elements of a List . 35
3.2.2 The “Rest” of the Story . 35
3.2.3 The Empty List . 36
3.2.4 Are You a List? . 36
3.2.5 The Conditional If . 37
3.2.6 Length of a List . 37
3.2.7 Member of a List . 38
3.2.8 Getting Part of a List . 39
3.2.9 Appending Lists . 39
3.2.10 Adding Elements to a List . 40
3.2.11 Removing Elements from a List . 40
3.2.12 Sorting Lists . 41
3.2.13 Treating a List as a Set . 42
3.2.14 Mapping a Function to a List . 42
3.2.15 Property Lists . 43

3.3 Control of Execution . 43
3.3.1 If . 43
3.3.2 When . 44
3.3.3 Logical Operators . 44
3.3.4 Cond . 45
3.3.5 Case . 46
3.3.6 Iteration . 46

3.4 Functions as Objects . 47
3.4.1 Named Functions . 47
3.4.2 Functional Arguments . 48
3.4.3 Anonymous Functions . 49

CONTENTS vii

3.4.4 Optional Arguments . 49
3.4.5 Keyword Arguments . 49

3.5 Input, Output, Streams, and Strings . 50
3.5.1 Read . 50
3.5.2 Print and Prin1 . 51
3.5.3 Princ . 51
3.5.4 Format . 51
3.5.5 Pathnames . 52
3.5.6 File Input and Output . 53

3.6 Hash Tables, Arrays, Structures, and Classes 54
3.6.1 Hash Tables . 54
3.6.2 Arrays . 55
3.6.3 Structures . 55
3.6.4 Classes and Methods . 56

3.7 Packages . 57
3.7.1 Importing and Exporting Symbols 58
3.7.2 The Keyword Package . 58

3.8 Common Stumbling Blocks . 58
3.8.1 Quotes . 58
3.8.2 Function Argument Lists . 59
3.8.3 Symbols vs. Strings . 59
3.8.4 Equality . 61
3.8.5 Distinguishing Macros from Functions 62
3.8.6 Operations that cons . 63

4 CL as a CASE tool 65
4.1 Executable Object Model . 65
4.2 Knowledge Base . 66
4.3 IDL and GDL Syntax . 67

4.3.1 Defpart . 67
4.3.2 Making Instances and Sending Messages 68
4.3.3 Parts . 69
4.3.4 Quantified Parts . 70

4.4 Personal Accounting Application . 71
4.4.1 Persistent Objects . 71
4.4.2 Adding Computed Messages . 73
4.4.3 Building the Object Hierarchy . 74
4.4.4 Interacting with the Model . 76

4.5 Conclusion . 78

5 CL as an Internet Application Server 79
5.1 AllegroServe and HTMLgen . 79

5.1.1 CL-based Webservers . 79
5.1.2 Generating HTML with AllegroServe’s htmlgen 80

5.2 GWL . 81

viii CONTENTS

5.2.1 Overview . 81
5.2.2 Examples . 81
5.2.3 Separating the “View” from the Object 84

5.3 Web-enabling the Personal Accounting Application 84
5.3.1 Standard Database Forms . 84
5.3.2 Customizing the Forms . 86
5.3.3 Customizing the Root-level Page with a Report 91

5.4 Conclusion . 94

A Bibliography 95

B Emacs Customization 97
B.1 Lisp Mode . 97
B.2 Making Your Own Keychords . 97
B.3 Keyboard Mapping . 98

C Afterword 101
C.1 About This Book . 101
C.2 Acknowledgements . 101
C.3 About the Author . 101

Index 103

Chapter 1

Introduction

1.1 The Past, Present, and Future of Common Lisp

1.1.1 Lisp Yesterday

Stanford University Professor John McCarthy discovered the basic principles of Lisp in
1958, when he was processing complex mathematical lists. Common Lisp (CL) is a high-
level computer language, whose syntax follows a simple list-like structure. The term “Lisp”
itself originally stood for “LISt Processing.” When developing, testing, and running a CL
program, at the core is a modern-day version of the original List Processor which processes
(compiling, evaluating, etc.) the elements of your program. These elements, at the source
code level, are represented as lists. A list, in this context, is just a sequence of items,
much like a familiar shopping list or checklist. Originally the List was pretty much the only
data structure supported by Lisp, but modern-day Common Lisp supports a wide range of
flexible and efficient data structures.

In a sense, Lisp acts similarly to the concept of a Java Virtual Machine, but in a much
more integral and natural fashion. The internal Lisp processor behaves like a complete
operating system, with multiple threads of execution and the ability to load new code and
redefine objects (functions, etc.) dynamically, i.e. without stopping and restarting the
“machine.”

This “operating system” characteristic also makes CL significantly more flexible than
other popular programming languages. Whereas other OS languages, such as shell scripts
or Perl CGI scripts, need to pipe data around, in CL all data manipulations can run
interactively within one single process with a shared memory space.

1.1.2 Lisp Today

The most popular form of Lisp used today, “ANSI Common Lisp,” was principally written
and designed by Guy Steele in Common Lisp, the Language, 2nd Edition (“CLtL2”) —
(see the Bibliography in Appendix A). This version of Lisp became the accepted industry
standard. In 1995, the American National Standards Institute recognized a slightly updated
version as ANSI Common Lisp, the first object-oriented language to receive certification,
and ANSI CL remains the only language that meets all of the criteria set forth by the

1

2 CHAPTER 1. INTRODUCTION

Object Management Group (OMG) for a complete object-oriented language.
Paul Graham outlines ANSI CL in his 1996 book ANSI Common Lisp, also listed in

Appendix A.
Official language standardization is important, because it protects developers from be-

coming saddled with legacy applications as new versions of a language are implemented.
For example, this lack of standardization has been a continuing problem for Perl developers.
Since each implementation of Perl defines the behavior of the language, it is not uncommon
to have applications that require outdated versions of Perl, making it nearly impossible to
use in a mission-critical commercial environment.

1.1.3 Lisp Tomorrow

Many developers once hoped that the software development process of the future would be
more automated through Computer-aided Software Engineering (CASE) tools. Such tools
claim to enable programmers and non-programmers to diagram their applications visually
and automatically generate code. While useful to a certain extent, traditional CASE tools
cannot cover domain-specific details and support all possible kinds of customizations — so
developers inevitably need to hand-code the rest of their applications, breaking the link
between the CASE model and the code. CASE systems fall short of being a true “problem-
solving tool.”

The recursive nature of CL, and its natural ability to build applications in layers and
build upon itself — in essence, code which writes code which writes code..., makes CL a
much better software engineering solution. CL programs can generate other CL programs,
allowing the developer to define all parts of the application in one unified high-level lan-
guage. Using macros and functions, naturally supported by the CL syntax, the system
can convert applications written in the high-level language automatically into “final” code.
Thus, CL is both a programming language and a powerful CASE tool, and there is no need
to break the connection.

Several other features of CL also save significant development time and manpower:

• Automatic Memory Management/Garbage Collection: inherent in CL’s basic archi-
tecture.

• Dynamic Typing: In CL, values have types, but variables do not. This means that
you don’t have to declare variables, or placeholders, ahead of time to be of a particular
type; you can simply create them or modify them on the fly1.

• Dynamic Redefinition: New operations and functionality can be added to the running
CL process without the need for downtime. In fact, a program can be running in one
thread, while parts of the code are redefined in another thread. Moreover, as soon as
the redefinitions are finished, the application will use the new code and is effectively
modified while running. This feature is especially useful for server applications that
can’t afford downtimes – they can be patched and repaired while running.

1While you don’t have to declare variable types, you may declare them. Doing so can help CL’s compiler
to optimize your program further.

1.2. CONVERGENCE OF HARDWARE AND SOFTWARE 3

• Portability: The “virtual machine” aspect of CL makes CL programs especially
portable.

• Standard Features: CL contains many built-in features and data structures that are
non-standard in other languages. Features such as full-blown symbol tables and pack-
age systems, hash tables, list structures, and a comprehensive object system are sev-
eral “automatic” features which would require significant developer time to recreate
in other languages.

1.2 Convergence of Hardware and Software

The most common criticism of Lisp usually made by programmers unfamiliar with the
language is that Lisp applications are too big and too slow. While this may have been
true 20 years ago, it is absolutely not the case today. Today’s inexpensive commodity
computers have more memory than some of the most powerful machines available just five
years ago, and easily meet the computing needs of CL. Hardware is no longer the critical
factor, programmers are!

Further, CL programming teams tend to be small, because the inherent features in CL
empower developers to do more. Without excessive effort, a single CL developer can create
and deploy a sophisticated, powerful program in a much shorter period of time than if
another language were used.

1.3 The CL Model of Computation

Programming in CL is distinguished from programming in other languages due to its unique
syntax and development mode. CL allows developers to make changes and test them im-
mediately, in an incremental manner. In other languages, a developer must follow the
“compile-link-run-test” cycle. These extra steps add minutes or hours to each cycle of de-
velopment, and break the programmer’s thought process. Multiply these figures by days,
weeks, and months — and the potential savings are phenomenal.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Operating a CL Development
Environment

This chapter covers some of the hands-on techniques used when working with a CL devel-
opment environment, specifically, the Allegro CL R© environment from Franz Inc. If you are
completely unfamiliar with any Lisp language, you may wish to reference Chapter 3 as you
read this chapter.

Ideally, while reading this chapter, you should have access to an actual Common Lisp
session and try typing in some of the examples.

When working with Common Lisp, it helps to think of the environment as its own
operating system, sitting on top of whatever operating system you happen to be working
with. In fact, people used to build entire workstations and operating systems in Lisp. The
Symbolics Common Lisp environment still runs as an emulated machine on top of the 64-bit
Compaq/DEC Alpha CPU, with its own Lisp-based operating system.

A complete and current listing of available CL systems can be found on the Association
of Lisp Users website, at

http://www.alu.org/table/systems.htm

These systems follow the same basic principles, and most of what you learn and write on one
system can be applied and ported over to others. The examples in this guide were prepared
using Allegro CL for Linux. Where possible, we will note Allegro CL-specific syntax and
extensions.

2.1 Installing a CL Environment

Installing a CL environment is generally a straightforward process. For Allegro CL on Linux,
this basically involves running a simple shell script which steps you through some licensing
information, then proceeds to unpack the distribution, and sets up the CL executable and
supporting files.

The Windows installation involves somewhat less typing and more mouse clicking.

5

6 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

2.2 Running CL in a Shell Window

The most primitive and simplest way to run CL is directly from the Unix (Linux) shell
from within a terminal window. Most programmers do not work this way on a daily basis
because other modes of use provide more power and convenience with fewer keystrokes.

This mode of working is sometimes useful for logging into a running CL system on a
remote host (e.g. a CL process acting as a webserver) when using a slow dial-up connection.

2.2.1 Starting CL from a Terminal Window

To start a CL session from a terminal window, simply type

lisp

from the Unix (or DOS) command line. Assuming your shell execution path is set up
properly and CL is installed properly, you will see some introductory information, then will
be presented with a Command Prompt which should look very similar to the following:

USER(1):

CL has entered its read-eval-print loop, and is waiting for you to type something which it
will then read, evaluate to obtain a return-value, and finally print this resulting return-value.

The USER printed before the prompt refers to the current CL package (more on Packages
later), and the number (1) simply keeps track of how many commands have been entered
at the prompt.

2.2.2 Stopping CL from a Terminal Window

Now that you have learned how to start CL, you should probably know how to stop it. In
Allegro CL, one easy way to stop the CL process is to type

(excl:exit)

at the Command Prompt. This should return you to the shell. In very rare cases, a stronger
hammer is required to stop the CL process, in which case you can try typing

(excl:exit 0 :no-unwind t)

Try It: Now try starting and stopping CL several times, to get a feel for it. In general, you
should notice that CL starts much more quickly on subsequent invocations. This is because
the entire executable file has already been read into the computer’s memory and does not
have to be read from the disk every time.

2.2. RUNNING CL IN A SHELL WINDOW 7

A shortcut for the (excl:exit) command is the toplevel command :exit. Toplevel
commands are words which are preceded by a colon [:] that you can type at the CL
Command Prompt as a shorthand way of making CL do something.

Try It: Start the CL environment. Then, using your favorite text editor, create a file
/tmp/hello.lisp and place the following text into it (don’t worry about understanding
the text for now):

(in-package :user)

(defun hello ()
(write-string "Hello, World!"))

Save the file to disk. Now, at the CL prompt in the shell where you started the CL
environment, compile and load this file as follows (text after the “USER” prompt represents
what you have to type; everything else is text printed by CL):

USER(3): (compile-file "/tmp/hello")
;;; Compiling file /tmp/hello.lisp
;;; Writing fasl file /tmp/hello.fasl Fasl write complete
#p"/tmp/hello.fasl"
NIL
NIL

USER(4): (load "/tmp/hello")
; Fast loading /tmp/hello.fasl
T

By default, the compile-file command will look for files with the .lisp suffix, and the
load command will load the resulting compiled machine-code (binary) file, which by default
will have the extension .fasl. The extension “.fasl” stands for “FASt Loading” file.

Note that, in general, simply loading an uncompiled Lisp file (using load) will func-
tionally have the same effect as loading a compiled binary (fasl) file. But the fasl file
will load faster, and any Functions, Objects, etc. defined in it will perform faster, since
they will have been optimized and translated into language which is closer to the actual
machine. Unlike Java “class” files, CL fasl files usually represent native machine-specific
code. This means that compiled CL programs will generally run much faster than compiled
Java programs, but CL programs must be compiled separately for each type of machine on
which you want to run them.

Finally, try executing the newly defined Function hello by typing the following at your
command line:

8 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

USER(5): (hello)
Hello, World!
"Hello, World!"

You should see the String Hello, World! printed (without double-quotes), then the re-
turned String (with double-quotes) will be printed as well. In the next chapter, The CL
Language, we will learn more about exactly what is going on here. For now the main
point to understand is the idea of compiling and loading definitions from files, and invoking
Functions by typing expressions at the CL command line.

2.3 Running CL inside a Text Editor

A more powerful way of developing with CL is by running it from within a Unix (or DOS)
shell that is running inside a buffer in a powerful text editor, such as Gnu Emacs1. One
advantage of this approach is that the editor (in our example, Emacs) keeps a history of
the entire session: both the expressions the programmer has typed, as well as everything
that CL has printed. All these items can be easily reviewed or recalled.

2.3.1 A Note on Emacs and Text Editors

To develop using Common Lisp, you can, of course, use any text editor of your choice,
although Emacs happens to be especially synergistic for working with CL, for reasons we
will discuss later. With a bit of practice, you will find that the combination of Emacs and
Allegro CL provides a more powerful and convenient development environment than any of
today’s flashy “visual programming” environments. If you are used to working with the “vi”
editor, Emacs comes with several “vi” emulation modes which you may want to experiment
with on a transitional basis. If you are used to working with a standard Windows-based
text editor, you will find a smooth transition to Emacs, and will find many “surprise and
delight” features as you progress on your Emacs journey.

This guide provides examples using Gnu Emacs.
To work with CL in an Emacs shell buffer, you should be reasonably familiar with the

text editor. If you are completely new to Gnu Emacs, go through the Emacs Tutorial,
available under the “Help” menu at the top of the Emacs window.

2.3.2 Emacs Terminology

As you will learn in the Emacs Tutorial, when working with Emacs you make frequent use
of key chords. Similar to “chords” on a piano, keychords can allow some powerful text
processing with relatively few sequential keystrokes.

They are key combinations involving holding down the Control key and/or the Meta
key, and pressing some other regular key.

1Gnu Emacs comes pre-installed with all Linux systems, and for other systems should come as part
of your Allegro CL distribution. In any case, Emacs distributions and documentation are available from
http://www.gnu.org

2.3. RUNNING CL INSIDE A TEXT EDITOR 9

See Appendix B for information on which keys represent Control and Meta on your
keyboard, and how you can customize these. To begin, try using the key labeled “Control”
for Control and the keys labeled “Alt” (or the diamond-shaped key on Sun keyboards) for
Meta. If your keyboard has a “Caps Lock” key to the left of the letter “A,” you should
consider remapping this to function as Control, as explained in Appendix B.

This guide uses the following notations to indicate keychords (identical to those refer-
enced in the Emacs Tutorial):

• M-x means to hold down the Meta key, and press (in this case) the “X” key

• C-x means to hold down the Control key, and press (in this case) the “X” key

• C-M-q means to hold down the Control key and the Meta key at the same time , and
press (in this case) the “Q” key

• M-A would mean to hold down the Meta key, and the Shift key (because the “A” is
uppercase), and press (in this case) the “A” key.

2.3.3 Starting, Stopping, and Working With CL inside an Emacs Shell

To start Emacs, type

emacs

or

gnuemacs

then start a Unix (or DOS) shell within emacs by typing M-x shell. Now type

lisp

inside this shell’s window to start a CL session there. To shut down a session, exit CL
exactly as above by typing

(excl:exit)

Exit from the shell by typing

exit

10 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

and finally exit from Emacs by typing C-x C-c or M-x kill-emacs. Note that it is good
practice always to exit from CL before exiting from Emacs. Otherwise the CL process may
be left as an “undead” (zombie) process.

When in the CL process, you can move forward and backward in the “stack” (history)
of expressions that you have typed, effectively recalling previous commands with only a few
keystrokes. Use M-p to move backward in the history, and M-n to move forward. You can
also use all of the editor’s text processing commands, for example to cut, copy, and paste
expressions between the command line and other windows and open files (“buffers”) you
may have open.

Try It: try typing the following expressions at the CL prompt. See what return-values
are printed, and try recalling previous expressions (commands) using M-p and M-n:

(list 1 2 3)

(+ 1 2 3)

(> 3 4)

(< 3 4)

Now, of course, you can edit, compile, load, and test your hello.lisp file as we did in
Section 2.2. But this time you are staying within a single environment (the text editor
environment) to achieve all these tasks.

2.4 Running CL as a subprocess of Emacs

An even more powerful way of developing with Allegro CL is by running it within Emacs
in conjunction with a special Emacs/Lisp interface provided by Franz Inc. This technique
provides all the benefits of running in an Emacs shell as outlined above, but is more powerful
because the Emacs-CL interface extends Emacs with several special commands. These
commands interact with the CL process, making the editor appear to be “Lisp-aware.” The
combination of Emacs with the Emacs-CL interface results in a development environment
whose utility approaches that of the vintage Symbolics Lisp Machines, which many Lisp
aficionados still consider to be technology advanced well beyond anything produced today.

Complete documentation of the Emacs-CL interface can be viewed by pointing your
web browser at: file:/usr/local/acl5/eli/readme.htm (you may have to modify this
pathname to point to your actual installed location of Allegro CL (acl5)).

2.4.1 Starting the CL subprocess within Emacs

To enable your Emacs to function in the proper manner, place the following expressions in
a file named .emacs in your home directory:

2.4. RUNNING CL AS A SUBPROCESS OF EMACS 11

Keychord Action Emacs-Lisp Function
C-M-x Compiles and loads

the Function near the
Emacs point

fi:lisp-eval-or-compile-defun

C-c
C-b

Compiles and loads
the current Emacs
buffer

fi:lisp-eval-or-compile-current-buffer

M-A Shows the Argument
List for a CL Func-
tion

fi:lisp-arglist

C-c . Finds the definition
of a CL object

fi:lisp-find-definition

Table 2.1: Common Commands of the Emacs-Lisp Interface

(setq load-path
(cons "/usr/local/acl5/eli" load-path))

(load "fi-site-init")

As above, you may have to modify this pathname to point to your actual installed location
of Allegro CL (acl5). Once you have added these lines to your .emacs file, you should be
able to restart emacs, then issue the command:

M-x fi:common-lisp

to start CL running and automatically establish a network connection between the Emacs
process and the CL process (in theory, the two processes could be running on different
machines, but in practice they usually will run on the same machine). Accept all the
defaults when prompted.

You can also start emacs with the CL subprocess automatically from a terminal window,
by invoking emacs with an optional “function” argument, as follows:

emacs -f fi:common-lisp

This will start Emacs, which itself will immediately launch CL.

2.4.2 Working with CL as an Emacs subprocess

Once you have started CL within Emacs, you will be presented with a special buffer named
common-lisp which in many ways is similar to simply running CL within a shell within
Emacs as above. But now you have several more capabilities available to you, as outlined
in Table 2.1.

12 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

To summarize, the Lisp-Emacs interface adds capabilities such as the following to your
development environment:

• Start and stop the CL process using Emacs commands

• Compile and load files into the running CL process, directly from the open Emacs
buffer you are editing (no need explicitly to save the file, call the compile-file
Function, then call the load Function, as with the “in-a-shell” techniques above)

• Query the running CL process for information about objects currently defined in it
— for example, querying the CL, directly from Emacs, for the argument List of a
particular Function

• Run multiple read-eval-print loops, or listeners, in different threads of CL execution,
as Emacs buffers

• Compile and load specified sections of an open Emacs buffer

• Locate the source code file corresponding to any defined CL object, such as a Function
or parameter, and automatically open it in an Emacs buffer

• Perform various debugging actions and other general CL help capabilities, directly
from within the Emacs session

In short, Emacs becomes a remarkably powerful, infinitely customizable, CL integrated
development environment.

2.4.3 Compiling and Loading a File from an Emacs buffer

Try it: Try starting Emacs with a CL subprocess as outlined above. If you have trouble,
consult the URL listed above for complete instructions on running the Lisp-Emacs interface.

Once you have Emacs running with a CL subprocess, you should have a buffer named
common-lisp. If your Emacs session is not already visiting this buffer, visit it with the
command C-x b *common-lisp*, or select *common-lisp* from the “Buffers” menu in
Emacs (see Appendix B for instructions on how to set up a “hot key” for this and other
common tasks when working with the Emacs-Lisp interface).

Now, split your Emacs frame into two windows, with the command C-x 2. In both
windows you should now see *common-lisp*. Now move the point2 to the other window
with C-x o, and open the hello.lisp file you created for the previous exercise3. If you
don’t have that file handy, create it now, with the following contents:

(defun hello ()
(write-string "Hello, World!"))

2In technical Emacs parlance, the point is the insertion point for text, and the cursor is the mouse
pointer.

3Remember that pressing the space bar will automatically complete filenames for you when opening files
in Emacs.

2.5. INTEGRATED DEVELOPMENT ENVIRONMENT 13

Now, compile and load the contents of this Function definition with C-M-x. Finally, switch
to the *common-lisp* window again with C-x o, and try invoking the hello Function by
calling it in normal Lisp fashion:

USER(5): (hello)
Hello, World!
"Hello, World!"

You should see the results printed into the same *common-lisp* buffer.
Try it: Now try the following: go back to the hello.lisp buffer, make an edit to

the contents (for example, change the String to "Hello, CL World!"). Now compile the
buffer with this change (Note that you do not necessarily have to save the file). Finally,
return to the *common-lisp* buffer, and try invoking the Function again to confirm that
the redefinition has taken effect.

You have now learned the basic essentials for working with the Emacs-Lisp interface.
See Appendix B for more information about Emacs customization and convenient Emacs
commands specific to the Lisp editing mode.

2.5 Integrated Development Environment

Some CL implementations support or integrate with an IDE, or Integrated Development
Environment. Such environments provide visual layout and design capabilities for User
Interfaces and other graphical, visual techniques for application development. For example,
such a system is available for Allegro CL on the Microsoft platforms. The details of these
systems are covered in their own documentation and are beyond the scope of this guide.

2.6 The User Init File

When CL begins execution, it usually looks for an initialization file, or “init” file, to load.
When CL loads this file, it will read and evaluate all the commands contained in it.

The default name and location for this initialization file is

.clinit.cl

in the user’s home directory on Unix/Linux, and

c:\clinit.cl

on Windows systems.
For example, the init file can be used to define library Functions and variables that the

user employs frequently, or to control other aspects of the CL environment. An example
init file is:

14 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

(in-package :user)

(defun load-project ()
(load "~/lisp/part1")
(load "~/lisp/part2"))

This will have the effect of defining a convenient Function the user can then invoke to
load the files for the current project. Note the call to the in-package Function, which
tells CL which Package to make “current” when loading this file. As we will see in more
detail in Section 3.7, CL Packages allow programs to be separated into different “layers,” or
“modules.” Notice also that in the calls to load we do not specify a file “type” extension,
e.g. .lisp or .fasl. We are making use of the fact that the load Function will look first
for a binary file (of type fasl), and if this is not found it will then look for a file of type
lisp. In this example we assume that our Lisp files will already have been compiled into
up-to-date binary fasl files.

In Section 2.9 we will look at some techniques for managing larger projects, and au-
tomating both the compiling and loading process for the source files making up a project.

Note: the IDE mentioned in Section 2.5 is also a full-featured and powerful project
system. The IDE is described in its own documentation, and is beyond the scope of this
document.

2.7 Using CL as a scripting language

Although CL is usually used in the interactive mode described above while developing a
program, it can be also used as a scripting language in more of a “batch” mode. For
example, by running CL as:

lisp -e ’(load "~/script")’ < datafile1 > datafile2

it will load all of the Function definitions and other expressions in file script.fasl or
script.lisp, will process datafile1 on its Standard Input, and will create datafile2
with anything it writes to its Standard Output. Here is an example of a simple script.lisp
file:

(in-package :user)

(defun process-data ()
(let (x j)

;;Read a line of input from datafile1
(setq x (read-line))

2.8. DEBUGGING IN CL 15

;;Remove leading spaces from X
(setq j (dotimes (i (length x))

(when (not (string-equal " " (subseq x i (+ i 1))))
(return i))))

(setq x (subseq x j))
;;Write the result to datafile2
(format t "~A~%" x)))

(process-data)

This file defines a Function to process the datafile, then calls this Function to cause the
actual processing to occur.

Note the use of the semicolon (“;”), which is a reader macro which tells CL to treat
everything between it and the end of the line as a comment (to be ignored by the CL
Reader).

2.8 Debugging in CL

CL provides one of the most advanced debugging and error-handling capabilities of any
language or environment. The most obvious consequence of this is that your application
will very rarely “crash” in a fatal manner. When an error occurs in a CL program, a break
occurs. CL prints an error message, enters the debugger, and presents the user with one
or more possible restart actions. This is similar to running inside a debugger, or in “debug
mode,” in other languages, but in CL this ability comes as a built-in part of the language.

For example, if we call the + Function with an alphabetic Symbol instead of a Number,
we generate the following error:

USER(95): (+ ’r 4)
Error: ‘R’ is not of the expected type ‘NUMBER’

[condition type: TYPE-ERROR]

Restart actions (select using :continue):
0: Return to Top Level (an "abort" restart)

[1] USER(96):

The number [1] at the front of the prompt indicates that we are in the debugger, at Level 1.
The debugger is itself a CL Command Prompt just like the toplevel Command Prompt, but
it has some additional functionality. The next section provides a partial list of commands
available to be entered directly at the debugger’s Command Prompt:

2.8.1 Common debugger commands

• :reset returns to the toplevel (out of any debug levels)

16 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

• :pop returns up one level

• :continue continues execution after a break or an error

• :zoom Views the current Function call stack4

• :up Moves the currency pointer up one frame in the stack

• :down Moves the currency pointer down one frame in the stack

• :help Describes all debugger commands

Franz Inc.’s Allegro Composer product also offers graphical access to these commands,
as well as additional functionality.

2.8.2 Interpreted vs Compiled Code

CL works with both compiled and interpreted code. When you type expressions at a Com-
mand Prompt, or use CL’s load Function to load lisp source files directly, you are intro-
ducing interpreted code into the system. This code does not undergo any optimization or
translation into a lower-level machine representation — internally to CL it exists in a form
very similar to its source code form. CL must do considerable work every time such code
is evaluated, since it must be translated into lower-level machine instructions on each use.

When you create compiled code, on the other hand, for example by using CL’s compile-file
command in order to produce a fasl file, the code is optimized and translated into an ef-
ficient form. Loading the fasl file will replace any previous interpreted definitions with
compiled definitions.

Interpreted code is the best to use for debugging a program, because the code has not
undergone as many transformations, so the debugger can provide the programmer with
more recognizable information.

If you are debugging with compiled code (e.g. after loading a fasl file), and you feel that
not enough information is available from within the debugger, try redefining the Function
in interpreted form and running it again. To redefine a Function in interpreted form you
can, of course, simply load the lisp source file, rather than the compiled fasl file.

2.8.3 Use of (break) and C-c to interrupt

In order to cause a break in your program interactively, issue the C-c command. When
running inside Emacs, you must use a “double” C-c, because the first C-c will be intercepted
by Emacs. Depending on what your application is doing, it may take a few moments for it
to respond to your break command. Once it responds, you will be given a normal debugger
level, as described above.

4the call stack is the sequence of Functions calls leading up to the error or break.

2.9. DEVELOPING PROGRAMS AND APPLICATIONS IN CL 17

2.8.4 Profiling

CL has built-in functionality for monitoring its own performance. The most basic and
commonly used component is the time Macro. You can “wrap” the time Macro around
any expression. Functionally, time will not affect the behavior of the expression, but it will
print out information about how long the expression took to be evaluated:

USER(2): (time (dotimes (n 10000) (* n 2))) cpu time (non-gc) 130
; msec user, 20 msec system cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 130 msec user, 20 msec system real time 147 msec

It is often interesting to look at the difference in time between interpreted and compiled
code. The example above is interpreted, since we typed it directly at the Command Line,
so CL had no opportunity to optimize the dotimes. In compiled form, the above code
consumes only one millisecond as opposed to 147 milliseconds.

In addition to the basic time Macro, Allegro CL provides a complete Profiler package,
which allows you to monitor exactly what your program is doing, when it is doing it, how
much time it takes, and how much memory it uses.

2.9 Developing Programs and Applications in CL

For developing a serious application in CL, you will want to have a convenient procedure
in place for starting up your development session.

2.9.1 A Layered Approach

The development session consists of your favorite text editor with appropriate customiza-
tions, and a running CL process with any standard code loaded into it. While you can
certainly develop serious applications on top of base CL, typically you will work in a lay-
ered fashion, on top of some standard tools or libraries, such as an embedded language, a
webserver, etc.

Using one of the techniques outlined below, starting a customized development session
with your standard desired tools should become convenient and transparent.

2.9.2 Compiling and Loading your Project

An individual project will generally consist of a tree of directories and files in your com-
puter’s filesystem. We will refer to this directory tree as the project’s codebase.

Generally, it does not matter in what order the files in the codebase are compiled and
loaded. Typical CL definitions, such as Functions, Classes, etc., can ordinarily be defined
in any order. However, certain constructs, most notably Packages and Macros, do have
order dependencies. In general, CL Packages and Macros must be defined before they can
be used, or referenced.

18 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

So one of the requirements of the startup process for a development session is that all
files be compiled and/or loaded in the correct order.

To start a development session on your project, you will generally want CL to do the
following:

1. Go through your project’s Codebase, finding source files in the proper order

2. For each file found, either load the corresponding binary file (if it is up-to-date), or
compile the source file to create a new binary file and load it (if the source file has
changed since the most recent compilation)

CL does not dictate one standard way of accomplishing this task, and in fact, several
options are available. One option is to use a defsystem package, which will allow you to
prepare a special file, similar to a “make” file, which lists out all your project’s source
files and their required load order. Allegro CL contains its own Defsystem package as
an extension to CL, and the open-source MK:Defsystem is available through Sourceforge
(http://www.sourceforge.net).

Using a Defsystem package requires you to maintain a catalog listing of all your project’s
source files. Especially in the early stages of a project, when you are adding, renaming, and
deleting a lot of files and directories, maintaining this catalog listing by hand can become
tiresome.

For this purpose, you may wish to use a lighter-weight utility for compiling and loading
your files, at least in the early stages of development. For very small projects, you can use
the Allegro CL Function excl:compile-file-if-needed, an extension to CL, by writing
a simple Function which calls this Function repeatedly to compile and load your project’s
files.

The Bootstrap package, available at http://gdl.sourceforge.net, provides the Func-
tion cl-lite, which will traverse a codebase, compiling and loading files, and observing
simple “ordering directive” files which can be placed throughout the codebase to enforce
correct load ordering.

For a new project, the best option is probably to start with a simple but somewhat
manual loading technique, then graduate into more automated techniques as they become
necessary and as you become more familiar with the environment.

2.9.3 Creating an Application “Fasl” File

Fasl files in Allegro CL and most other CL systems have the convenient property that they
can simply be concatenated, e.g. with the Unix/Linux cat command, to produce a single
fasl file. Loading this single file will have the same effect as loading all the individual files
which went into it, in the same order as they were concatenated.

In certain situations, this can be a convenient mechanism for loading and/or distributing
your project. For example, you can prepare a concatenated fasl file, email it to a colleague,
and the colleague needs only to load this file. Thus, there is no chance of confusion about
how (e.g. in what order) to load individual files.

2.9. DEVELOPING PROGRAMS AND APPLICATIONS IN CL 19

2.9.4 Creating an Image File

Loading Lisp source files or compiled binary files into memory at the start of each session
can become slow and awkward for large programs.

An alternative approach is to build an image file. This entails starting a CL process,
loading all application files into the running CL process, then creating a new “CL Image.”
In Allegro CL, this is done by invoking the Function:

excl:dumplisp

The Image File is typically named with a .dxl extension. Once you have created an Image
File, you can start a session simply by starting CL with that Image File, as follows:

lisp -I <image-file-name>.dxl

You must then compile/load any files that have changed since the Image File was created.
Starting CL with the Image File has the same effect as starting a base CL and loading all
your application files, but is simpler and much faster.

2.9.5 Building Runtime Images

CL Image files built with excl:dumplisp contain the entire CL environment, and may
also contain information which is specific to a certain machine or certain site. Allegro CL
also provides a mechanism for building runtime images, which contain only the informa-
tion needed to run an end-user application. These Runtime Images can be packaged and
distributed just as with any stand-alone software application.

Preparing runtime images for different platforms (e.g. Sun Solaris, Linux, Windows,
etc.) is usually a simple matter of running a compilation and building a runtime image for
the target platform — application source code typically remains identical among different
platforms. See your platform-specific documentation for details about creating Runtime
Images.

2.9.6 Using an Application Init File

In some cases, for a finished production application, you will want the CL process to ex-
ecute certain commands upon startup (for example, loading some data from a database).
However, you do not want to depend on the end-user having the appropriate .clinit.cl
in his or her home directory. For such cases, you can specify a different location for the init
file, which can be installed along with the application itself. One way to accomplish this is
with the -q command-line argument to the lisp command. This argument will tell CL to
look in the current directory, rather than in the default location, for the init file.

To use this technique, you would set up an “application home” directory, place the
application’s .clinit.cl file in this directory, and start the application with a production
startup script. This script would first change into the “application home” directory, then

20 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

start CL with your application’s image file, or start a Runtime Image. Such a startup script
might look like this:

cd $MYAPP_HOME
lisp -I image.dxl -q

In this example, both the application’s init file and the application’s image file would be
housed in the directory named by the environment variable $MYAPP HOME.

2.10 Using CL with Other Languages and Environments

One of CL’s strong points is its flexibility in working with other environments. In this section
we will briefly mention six different ways in which CL can integrate and/or communicate
with other languages and environments.

2.10.1 Interfacing with the Operating System

One of the most basic means of interacting with the outside world is simply to invoke
commands at the operating system level, in similar fashion to Perl’s “system” command.
In Allegro CL, one way to accomplish this is with the Function excl:run-shell-command.
This command takes a String which represents a command (possibly with arguments) to
be executed through an operating system shell, such as the “C” shell on Unix:

(excl:run-shell-command "ls")

The Standard Output from a shell command invoked in this fashion will be inherited by
CL’s Standard Output, so you will see it in the normal CL console. Alternatively, you can
specify that the output go to another location, such as a file, or a variable defined inside
the CL session.

When using excl:run-shell-command, you can also specify whether CL should wait
for the shell command to complete, or should simply go about its business and let the shell
command complete asynchronously.

2.10.2 Foreign Function Interface

Allegro CL’s foreign function interface allows you to load compiled libraries and object
code from C, C++, Fortran, and other languages, and call functions defined in this code
as if they were defined natively in CL. This technique requires a bit more setup work than
using simple shell commands with excl:run-shell-command, but it will provide better
performance and more transparent operation once it is set up.

2.10. USING CL WITH OTHER LANGUAGES AND ENVIRONMENTS 21

2.10.3 Interfacing with Corba

Corba, or the Common Object Request Broker Architecture, is an industry-standard mech-
anism for connecting applications written in different object-oriented languages.

To use Corba, you define a standard Interface for your application in a language called
Interface Definition Language (Corba IDL), and each application must compile the standard
Interface and implement either a Servant or a Client for the interface. In this manner,
Servants and Clients can communicate through a common protocol, regardless of what
language they are written in.

In order to use Corba with CL requires a Corba IDL compiler implemented in CL, as
well as a run-time ORB, or Object Request Broker, to handle the actual Client/Server
communications. Several such Corba IDL compilers and ORBs are available for CL. An
example of such a system is Orblink, which is available as an optional package for Allegro
CL. Orblink consists of a complete Corba IDL compiler, and a CL-based ORB, which runs
as a CL thread rather than as a separate operating system process.

Using Orblink to integrate a CL application to a Corba Client/Server environment is
a straightforward process. To start, you simply obtain the Corba IDL files for the desired
Interface, and compile them in CL with the command corba:idl. This will automatically
define a set of Classes in CL corresponding to all the Classes, Methods, etc. which make
up the Interface.

To use CL as a Client, you can now simply make instances of the desired Classes, and
use them to call the desired Methods. The Orblink ORB will take care of communicating
these Method calls across the network, where they will be invoked in the actual process
where the corresponding Servant is implemented (which could be on a completely different
machine written in a completely different language).

To use CL as a Servant, you must implement the relevant Interfaces. This consists of
defining Classes in CL which inherit from the “stub” Servant Classes automatically defined
by the compilation of the Corba IDL, then defining Methods which operate on these Classes,
and which perform as advertised in the Interface. Typically, a Corba Interface will only
expose a small piece of an entire application, so implementing the Servant Classes would
usually represent a small chore relative to the application itself.

2.10.4 Custom Socket Connections

Just about every CL implementation provides a mechanism to program directly with net-
work sockets, in order to implement “listeners” and network client applications. As a
practical example, Figure 2.1 shows a Telnet server, written by John Foderaro of Franz
Inc., in 22 lines of code in Allegro CL. This Telnet server will allow a running CL process to
accept a Telnet login on port 4000 on the machine on which it is running, and will present
the client with a normal CL Command Prompt (for security, it will by default only accept
connections from the local machine).

2.10.5 Interfacing with Windows (COM, DLL, DDE)

Most Commercial CL implementations for the Microsoft Windows platform will allow CL
applications to use various Microsoft-specific means for integrating with the Microsoft plat-

22 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

(defun start-telnet (&optional (port 4000))
(let ((passive (socket:make-socket :connect :passive

:local-host "127.1"
:local-port port
:reuse-address t)))

(mp:process-run-function
"telnet-listener"
#’(lambda (pass)

(let ((count 0))
(loop

(let ((con (socket:accept-connection pass)))
(mp:process-run-function
(format nil "tel~d" (incf count))
#’(lambda (con)

(unwind-protect
(tpl::start-interactive-top-level
con
#’tpl::top-level-read-eval-print-loop
nil)

(ignore-errors (close con :abort t))))
con)))))

passive)))

Figure 2.1: Telnet Server in 22 Lines

2.10. USING CL WITH OTHER LANGUAGES AND ENVIRONMENTS 23

form. For example, an Allegro CL application can be set up to run as a COM Server, or
compiled into a DLL to be used by other applications.

2.10.6 Code Generation into Other Languages

CL excels at reading and generating CL code. It is also a powerful tool for analyzing and
generating code in other languages. An example of this can be found in Chapter 5, where
we use a convenient CL macro to generate HTML for a web page.

Another example is MSC’s AutoSim product, which uses a CL program to model an
automobile, then generates optimized C programs for solving specialized systems of linear
equations relating to vehicle dynamics.

CL also played a crucial role in preventing the Y2K disaster by automatically analyzing
and repairing millions of lines of COBOL!

24 CHAPTER 2. OPERATING A CL DEVELOPMENT ENVIRONMENT

Chapter 3

The CL Language

If you are new to the CL language, we recommend that you supplement this chapter with
other resources. See the Bibliography in Appendix A for some suggestions. The Bibliogra-
phy also lists two interactive online CL tutorials from Tulane University and Texas A&M,
which you may wish to visit.

In the meantime, this chapter will provide a condensed overview of the language. Keep
in perspective, however, that this booklet is intended as a summary, and will not delve into
some of the more subtle and powerful techniques possible with Common Lisp.

3.1 Overview of CL and its Syntax

The first thing you should observe about CL (and most languages in the Lisp family) is
that it uses a generalized prefix notation.

One of the most frequent actions in a CL program, or at the toplevel read-eval-print
loop, is to call a Function. This is most often done by writing an expression which names
the Function, followed by its arguments. Here is an example:

(+ 2 2)

This expression consists of the Function named by the Symbol “+,” followed by the argu-
ments 2 and another 2. As you may have guessed, when this expression is evaluated it will
return the value 4.

Try it: Try typing this expression at your command prompt, and see the return-value
being printed on the console.

What is it that is actually happening here? When CL is asked to evaluate an expres-
sion (as in the toplevel read-eval-print loop), it evaluates the expression according to the
following rules:

1. If the expression is a number (i.e. looks like a Number), it simply evaluates to itself
(a Number):

25

26 CHAPTER 3. THE CL LANGUAGE

USER(8): 99
99

2. If the expression looks like a string (i.e. is surrounded by double-quotes), it also
simply evaluates to itself:

USER(9): "Be braver -- you can’t cross a chasm in two small jumps."
"Be braver -- you can’t cross a chasm in two small jumps."

3. If the expression looks like a literal symbol, it will simply evaluate to that symbol
(more on this in Section 3.1.4):

USER(12): ’my-symbol
MY-SYMBOL

4. If the expression looks like a list (i.e. is surrounded by parentheses), CL assumes that
the first element in this List is a symbol which names a Function or a Macro, and the
rest of the elements in the List represent the arguments to the Function or Macro.
(We will discuss Functions first, Macros later). A Function can take zero or more
arguments, and can return zero or more return-values. Often a Function only returns
one return-value:

USER(14): (expt 2 5)
32

Try it: Try typing the following functional expressions at your command prompt, and
convince yourself that the printed return-values make sense:

(+ 2 2)

(+ 2)

2

3.1. OVERVIEW OF CL AND ITS SYNTAX 27

(+)

(+ (+ 2 2) (+ 3 3))

(+ (+ 2 2))

(user-id)

(user-homedir-pathname)

(get-universal-time) ;; returns number of seconds since January 1, 1900

(search "Dr." "I am Dr. Strangelove")

"I am Dr. Strangelove"

(subseq (search "Dr." "I am Dr. Strangelove")
"I am Dr. Strangelove")

3.1.1 Evaluation of Arguments to a Function

Note that the arguments to a Function can themselves be any kind of the above expressions.
They are evaluated in order, from left to right, and finally they are passed to the Function
for it to evaluate. This kind of nesting can be arbitrarily deep. Do not be concerned about
getting lost in an ocean of parentheses — most serious text editors can handle deeply nested
parentheses with ease, and moreover will automatically indent your expressions so that you,
as the programmer, never have to concern yourself with matching parentheses.

3.1.2 Lisp Syntax Simplicity

One of the nicest things about Lisp is the simplicity and consistency of its syntax. What
we have covered so far pertaining to the evaluation of arguments to Functions is just about
everything you need to know about the syntax. The rules for Macros are very similar, with
the primary difference being that all the arguments of a Macro are not necessarily evaluated
at the time the Macro is called — they can be transformed into something else first.

This simple consistent syntax is a welcome relief from other widely used languages such
as C, C++, Java, Perl, and Python. These languages claim to use a “more natural” “infix”
syntax, but in reality their syntax is a confused mixture of prefix, infix, and postfix. They
use infix only for the simplest arithmetic operations such as

2 + 2

and

28 CHAPTER 3. THE CL LANGUAGE

3 * 13

and use postfix in certain cases such as

i++

and

char*

But mostly they actually use a prefix syntax much the same as Lisp, as in:

split(@array, ":");

So, if you have been programming in these other languages, you have been using prefix
notation all along, but may not have noticed it. If you look at it this way, the prefix
notation of Lisp will seem much less alien and, in fact, downright natural to you.

3.1.3 Turning Off Evaluation

Sometimes you want to specify an expression at the toplevel read-eval-print loop, or inside
a program, but you do not want CL to evaluate this expression. You want just the literal
expression. CL provides the special operator quote for this purpose. For example,

(quote a)

will return the literal Symbol A. Note that, by default, the CL reader will convert all Symbol
names to uppercase at the time the Symbol is read into the system. Note also that Symbols,
if evaluated “as is,” (i.e. without the quote), will by default behave as variables, and CL
will attempt to retrieve an associated value. More on this later.

Here is another example of using quote to return a literal expression:

(quote (+ 1 2))

Unlike evaluating a List expression “as is,” this will return the literal List (+ 1 2). This
List may now be manipulated as a normal List data structure.

Common Lisp defines the abbreviation ’ as a shorthand way to “wrap” an expression
in a call to quote. So the previous examples could equivalently be written as:

3.1. OVERVIEW OF CL AND ITS SYNTAX 29

’a

’(+ 1 2)

3.1.4 Fundamental CL Data Types

Common Lisp natively supports many data types common to other languages, such as
Numbers, Strings, and Arrays. Native to CL is also a set of types which you may not have
come across in other languages, such as Lists, Symbols, and Hash tables. In this overview
we will touch on Numbers, Strings, Symbols, and Lists. Later in the book we will provide
more detail on some CL-specific data types.

Regarding data types, CL follows a paradigm called dynamic typing. Basically this
means that values have type, but variables do not necessarily have type, and typically
variables are not “pre-declared” to be of a particular type.

Numbers

Numbers in CL form a hierarchy of types, which includes Integers, Ratios, Floating Point,
and Complex Numbers. For many purposes you only need to think of a value as a “Number,”
without getting any more specific than that. Most arithmetic operations, such as +, -, *,
/, etc, will automaticaly do any necessary type coercion on their arguments and will return
a Number of the appropriate type.

CL supports a full range of floating-point decimal Numbers, as well as true Ratios,
which means that 1/3 is a true one-third, not 0.333333333 rounded off at some arbitrary
precision.

As we have seen, Numbers in CL are a native data type which simply evaluate to
themselves when entered at the toplevel or included in an expression.

Strings

Strings are actually a specialized kind of Array , namely a one-dimensional array (vector)
made up of characters. These characters can be letters, Numbers, or punctuation, and in
some cases can include characters from international character sets (e.g. Unicode) such as
Chinese Hanzi or Japanese Kanji. The String delimiter in CL is the double-quote character
(").

As we have seen, Strings in CL are a native data type which simply evaluate to them-
selves when included in an expression.

Symbols

Symbols are such an important data structure in CL that people sometimes refer to CL as
a “symbolic computing” language. Symbols are a type of CL object which provides your
program with a built-in mechanism to store and retrieve Values and Functions, as well as

30 CHAPTER 3. THE CL LANGUAGE

being useful in their own right. A Symbol is most often known by its name (actually a
String), but in fact there is much more to a Symbol than its name. In addition to the name,
Symbols also contain a Function slot, a Value slot, and an open-ended Property-list slot in
which you can store an arbitrary number of named properties.

For a named Function such as +, the Function-slot of the Symbol + contains the actual
Function itself. The Value slot of a Symbol can contain any value, allowing the Symbol to
act as a global variable, or Parameter. And the Property-list, or Plist slot, can contain an
arbitrary amount of information.

This separation of the Symbol data structure into Function, Value, and Plist slots is
one obvious distinction between Common Lisp and most other Lisp dialects. Most other
dialects allow only one (1) “thing” to be stored in the Symbol data structure, other than its
name (e.g. either a Function or a Value, but not both at the same time). Because Common
Lisp does not impose this restriction, it is not necessary to contrive names, for example
for your variables, to avoid conflicting with existing “reserved words” in the system. For
example, “list” is the name of a built-in Function in CL. But you may freely use “list”
as a variable as well. There is no need to contrive arbitrary abbreviations such as “lst.”

How Symbols are evaluated depends on where they occur in an expression. As we have
seen, if a Symbol appears first in a List expression, as with the + in (+ 2 2), the Symbol is
evaluated for its Function slot. If the first element of an expression is a Symbol which indeed
does contain a Function in its Function slot, then any Symbol which appears anywhere else
(i.e. in the rest) of the expression is taken as a variable, and it is evaluated for its global or
local value, depending on its Scope. More on Variables and Scope later.

As noted in Section 3.1.3, if you want a literal Symbol itself, one way to achieve this is
to “quote” the Symbol name:

’a

Another way is for the Symbol to appear within a quoted List expression:

’(a b c)

’(a (b c) d)

Note that the quote (’) applies across everything in the List expression, including any
sub-expressions.

Lists

Lisp takes its name from its strong support for the List data structure. The List concept
is important to CL for more than this reason alone — Lists are important because all
CL programs themselves are Lists! Having the List as a native data structure, as well as
the form of all programs, means that it is especially straightforward for CL programs to
compute and generate other CL programs. Likewise, CL programs can read and manipulate
other CL programs in a natural manner. This cannot be said of most other languages, and
is one of the primary distinguishing characteristics of CL.

3.1. OVERVIEW OF CL AND ITS SYNTAX 31

Textually, a List is defined as zero or more elements surrounded by parentheses. The
elements can be objects of any valid CL data types, such as Numbers, Strings, Symbols,
Lists, or other kinds of Objects. As we have seen, you must quote a literal List to evaluate
it or CL will assume you are calling a Function.

Now look at the following List:

(defun hello () (write-string "Hello, World!"))

This List also happens to be a valid CL program (Function definition, in this case). Don’t
worry about analyzing the Function right now, but do take a few moments to convince
yourself that it meets the requirements for a List. What are the types of the elements in
this List?

In addition to using the quote (’) to produce a literal List, another way to produce a
List is to call the Function list. The Function list takes any number of arguments, and
returns a List made up from the result of evaluating each argument (as with all Functions,
the arguments to the list Function get evaluated, from left to right, before being passed
into the Function). For example,

(list ’a ’b (+ 2 2))

will return the List (A B 4). The two quoted Symbols evaluate to Symbols, and the Func-
tion call (+ 2 2) evaluates to the Number 4.

3.1.5 Functions

Functions form the basic building block of CL. Here we will give a brief overview of how to
define a Function; later we will go into more detail on what a Function actually is.

A common way to define named Functions in CL is with the macro defun, which stands
for DEFinition of a FUNction. Defun takes as its arguments a Symbol, an Argument List,
and a Body:

(defun my-first-lisp-function ()
(list ’hello ’world))

Because defun is a Macro, rather than a Function, it does not follow the hard-and-fast rule
that all its arguments are evaluated as expressions — specifically, the Symbol which names
the Function does not have to be quoted, nor does the Argument List. These are taken as
a literal Symbol and a literal List, respectively.

Once the Function has been defined with defun, you can call it just as you would call
any other Function, by wrapping it in parentheses together with its arguments:

32 CHAPTER 3. THE CL LANGUAGE

USER(56): (my-first-lisp-fn)
(HELLO WORLD)

USER(57): (defun square(x)
(* x x))

SQUARE

USER(58): (square 4)
16

Declaring the types of the arguments to a Function is not required.

3.1.6 Global and Local Variables

Global Variables

Global variables in CL are usually also known as special variables. They can be established
by calling defparameter or defvar from the read-eval-print loop, or from within a file that
you compile and load into CL:

(defparameter *todays-temp* 90)
(defvar *humidity* 70)

The surrounding asterisks on these Symbol names are part of the Symbol names themselves,
and have no significance to CL. This is simply a long-standing naming convention for global
variables (i.e. parameters), to make them easy to pick out with the human eye.

Defvar and defparameter differ in one important way: if defvar is evaluated with
a Symbol which already has a global value, it will not overwrite it with a new value.
Defparameter, on the other hand, will overwrite it with a new value:

USER(4): *todays-temp*
90

USER(5): *todays-humidity*
70

USER(6): (defparameter *todays-temp* 100)
TODAYS-TEMP

USER(7): (defvar *todays-humidity* 50)
TODAYS-HUMIDITY

USER(8): *todays-temp*
100

3.1. OVERVIEW OF CL AND ITS SYNTAX 33

USER(9): *todays-humidity*
70

todays-humidity did not change because we used defvar, and it already had a previous
value.

The value for any Parameter can always be changed from the toplevel with setq:

USER(11): (setq *todays-humidity* 30)
30

USER(12): *todays-humidity*
30

Although setq will work with new variables, stylistically it should only be used with already-
established variables.

During application development, it often makes sense to use defvar rather than defparameter
for variables whose values might change during the running and testing of the program. This
way, you will not unintentionally reset the value of a parameter if you compile and load the
source file where it is defined.

Local Variables

New local variables can be introduced with the Macro let:

USER(13): (let ((a 20)
(b 30))

(+ a b))
50

As seen in the above example, let takes an assignment section and a body. Let is a Macro,
rather than a Function1, so it does not follow the hard-and-fast rule that all its arguments
are evaluated. Specifically, the assignment section

((a 20)
(b 30))

is not evaluated (actually, the Macro has the effect of transforming this into something else
before the CL evaluator even sees it). Because this assignment section is not evaluated by

1See Section 3.8.5 for a discussion of how to recognize Macros and Functions

34 CHAPTER 3. THE CL LANGUAGE

the let Macro, it does not have to be quoted, like a List which is an argument to a Function
would have to be. As you can see, the assignment section is a List of Lists, where each
internal List is a pair whose first is a Symbol, and whose second is a value (which will
be evaluated). These Symbols (a and b) are the local variables, and they are assigned to
the respective values.

The Body consists of any number of expressions which come after the assignment section
and before the closing parenthesis of the let statement. The expressions in this Body are
evaluated normally, and of course any expression can refer to the value of any of the local
variables simply by referring directly to its Symbol. If the Body consists of more than one
expression, the final return-value of the Body is the return-value of its last expression.

New Local variables in CL are said to have lexical scope, which means that they are
only accessible in the code which is textually contained within the body of the let. The
term lexical is derived from the fact that the behavior of these variables can be determined
simply by reading the text of the source code, and is not affected by what happens during
the program’s execution.

Dynamic scope happens when you basically mix the concept of global parameters and
local let variables. That is, if you use the name of a previously established parameter
inside the assignment section of a let, like this:

(let ((*todays-humidity* 50))
(do-something))

the parameter will have the specified value not only textually within the the Body of the
let, but also in any Functions which may get called from within the body of the let. The
global value of the parameter in any other contexts will not be affected. Because this scoping
behavior is determined by the runtime “dynamic” execution of the program, we refer to it
as Dynamic scope.

Dynamic scope is often used for changing the value of a particular global parameter
only within a particular tree of Function calls. Using Dynamic scope, you can accomplish
this without affecting other places in the program which may be referring to the parameter.
Also, you do not have to remember to have your code “reset” the parameter back to a
default global value, since it will automatically “bounce” back to its normal global value.

Dynamic Scoping capability is especially useful in a multithreaded CL, i.e., a CL process
which can have many (virtually) simultaneous threads of execution. A parameter can take
on a dynamically scoped value in one thread, without affecting the value of the parameter
in any of the other concurrently running threads.

3.2 The List as a Data Structure

In this section we will present some of the fundamental native CL operators for manipulating
Lists as data structures. These include operators for doing things such as:

1. finding the length of a List

3.2. THE LIST AS A DATA STRUCTURE 35

2. accessing particular members of a List

3. appending multiple Lists together to make a new List

4. extracting elements from a List to make a new List

3.2.1 Accessing the Elements of a List

Common Lisp defines the accessor Functions first through tenth as a means of accessing
the first ten elements in a List:

USER(5): (first ’(a b c))
A

USER(6): (second ’(a b c))
B

USER(7): (third ’(a b c))
C

For accessing elements in an arbitrary position in the List, you can use the Function nth,
which takes an integer and a List as its two arguments:

USER(8): (nth 0 ’(a b c))
A

USER(9): (nth 1 ’(a b c))
B

USER(10): (nth 2 ’(a b c))
C

USER(11): (nth 12 ’(a b c d e f g h i j k l m n o p))
M

Note that nth starts its indexing at zero (0), so (nth 0 ...) is equivalent to (first ...),
and (nth 1 ...) is equivalent to (second ...), etc.

3.2.2 The “Rest” of the Story

A very common operation in CL is to perform some operation on the first of a List, then
perform the same operation on the rest of the List, repeating the procedure until the end
of the List, i.e. the Empty List, is reached. The Function rest is very helpful in such cases:

36 CHAPTER 3. THE CL LANGUAGE

USER(59): (rest ’(a b c))
(B C)

As you can see from this example, rest returns a List consisting of all but the first of its
argument.

3.2.3 The Empty List

The Symbol NIL is defined by Common Lisp to be equivalent to the Empty List, (). NIL
also has the interesting property that its Value is itself, which means that it will always
evaluate to itself, whether or not it is quoted. So NIL, ’NIL, and () all evaluate to the
Empty List, whose default printed representation is NIL:

USER(14): nil
NIL

USER(15): ’nil
NIL

USER(16): ()
NIL

The Function null can be used to test whether or not something is the Empty List:

USER(17): (null ’(a b c))
NIL

USER(18): (null nil)
T

USER(19): (null ())
T

As you may have deduced from the above examples, the Symbol T is CL’s default represen-
tation for True. As with NIL, T evaluates to itself.

3.2.4 Are You a List?

To test whether or not a particular object is a List, CL provides the Function listp. Like
many other Functions which end with the letter “p,” this Function takes a single argument
and checks whether it meets certain criteria (in this case, whether it qualifies as a List).
These predicate Functions ending in the letter “p” will always return either T or NIL:

3.2. THE LIST AS A DATA STRUCTURE 37

USER(20): (listp ’(pontiac cadillac chevrolet))
T

USER(21): (listp 99)
NIL

USER(22): (listp nil)
T

Note that (listp nil) returns T, since NIL is indeed a List (albeit the empty one).

3.2.5 The Conditional If

Before continuing with a number of other basic List Functions, we will cover the macro if,
which allows simple conditionals. If takes three arguments, a test-form, a then-form, and
an else-form. When an if form is evaluated, it first evaluates its Test-form. If the form
returns non-NIL, it will evaluate the Then-form, else it will evaluate the Else-form. The
nesting of multiple if expressions is possible, but not advised; later we will cover other
constructs which are more appropriate for such cases.

Here are some simple examples using the if macro:

USER(2): (if (> 3 4)
"no"

"yes")
"yes"

USER(3): (if (listp ’("Chicago" "Detroit" "Toronto"))
"it is a list"

"it ain’t a list")
"it is a list"

USER(4): (if (listp 99)
"it is a list"

"it ain’t a list")
"it ain’t a list"

3.2.6 Length of a List

Normally you can use the Function length to get the number of elements in a List as an
Integer:

38 CHAPTER 3. THE CL LANGUAGE

USER(5): (length ’(gm ford chrysler volkswagen))
4

USER(6): (length nil)
0

The length Function, as with most of Common Lisp, can itself be implemented in CL. Here
is a simplified version of an our-length Function which illustrates how length might be
implemented:

(defun our-length (list)
(if (null list)

0
(+ (our-length (rest list)) 1)))

Note that the Function uses the Symbol list to name its argument, which is perfectly valid
as we discussed in section 3.1.4.

In English, this Function says basically: “If the List is empty, its length is zero. Other-
wise its length is one greater than the length of its rest.” As with many Functions which
operate on Lists, this recursive definition is a natural way to express the length operation.

3.2.7 Member of a List

The member Function will help you to determine whether a particular item is an element
of a particular List. Like many similar Functions, member uses eql to test for equality,
which is one of the most basic equality Functions in CL (see Section 3.8.4 for a discussion
of equality in CL). Eql basically means the two objects must be the same Symbol, Integer,
or actual Object (i.e. the same address in memory).

Member takes two arguments: an Item and a List. If the Item is not in the List, it
returns NIL. Otherwise, it returns the rest of the List, starting from the found element:

USER(7): (member ’dallas ’(boston san-francisco portland))
NIL

USER(8): (member ’san-francisco ’(boston san-francisco portland))
(SAN-FRANCISCO PORTLAND)

As with length, we could define member using a Function definition which is very close to
the English description of what the Function is supposed to do2:

2The use of the “nested” if statement in this example, while functionally correct, is a violation of good
CL style. Later we will learn how to avoid nested if statements.

3.2. THE LIST AS A DATA STRUCTURE 39

(defun our-member (elem list)
(if (null list)

nil
(if (eql elem (first list))

list
(our-member elem (rest list)))))

In English, you might read this Function to say “If the List is empty, return NIL. Otherwise,
if the desired item is the same as the first of the List, return the entire List. Otherwise,
do the same thing on the rest of the List.”

Note that, for the purposes of any kind of logical operators, returning any non-NIL value
is “as good as” returning T. So the possible return-values of the member Function are as
good as returning T or NIL as far as any logical operators are concerned.

3.2.8 Getting Part of a List

Subseq is a common Function to use for returning a portion of a List (or actually any type
of Sequence). Subseq takes at least two arguments, a List and an Integer indicating the
position to start from. It also takes an optional third argument, an Integer indicating the
position to stop. Note that the position indicated by this third argument is not included in
the returned sub-List:

USER(9): (subseq ’(a b c d) 1 3)
(B C)

USER(10): (subseq ’(a b c d) 1 2)
(B)

USER(11): (subseq ’(a b c d) 1)
(B C D)

Note also that the optional third argument in effect defaults to the length of the List.

3.2.9 Appending Lists

The Function append takes any number of Lists, and returns a new List which results from
appending them together. Like many CL Functions, append does not side-effect, that is, it
simply returns a new List as a return-value, but does not modify its arguments in any way:

USER(6): (setq my-slides ’(introduction welcome lists Functions))
(INTRODUCTION WELCOME LISTS FUNCTIONS)

40 CHAPTER 3. THE CL LANGUAGE

USER(7): (append my-slides ’(numbers))
(INTRODUCTION WELCOME LISTS FUNCTIONS NUMBERS)

USER(8): my-slides
(INTRODUCTION WELCOME LISTS FUNCTIONS)

USER(9): (setq my-slides (append my-slides ’(numbers)))
(INTRODUCTION WELCOME LISTS FUNCTIONS NUMBERS)

USER(10): my-slides
(INTRODUCTION WELCOME LISTS FUNCTIONS NUMBERS)

Note that the simple call to append does not affect the variable my-slides. If we wish
to modify the value of this variable, however, one way to do this is by using setq in
combination with the call to append. Note also the use of setq directly at the toplevel
with a new variable name. For testing and “hacking” at the Command Prompt, this is
acceptable, but in a finished program all such global variables should really be formally
declared with defparameter or defvar.

3.2.10 Adding Elements to a List

To add a single element to the front of a List, you can use the Function cons:

USER(13): (cons ’a ’(b c d))
(A B C D)

Cons is actually the low-level primitive Function upon which many of the other List-
constructing Functions are built. As you may have guessed, “cons” stands for “CON-
Struct,” as in “Construct a List.” When you read or hear people talking about a CL
program doing a lot of “consing,” they are referring to the program’s behavior of building
a lot of List structures, many of which are transitory and will need to be “freed up” by the
automatic memory management subsystem, or “garbage collector.”

As with append, cons is non-destructive, meaning it does no side-effecting (modification)
to its arguments.

3.2.11 Removing Elements from a List

The Function remove takes two arguments, any item and a List, and returns a new List
with all occurences of the item taken out of it:

USER(15): (setq data ’(1 2 3 1000 4))

3.2. THE LIST AS A DATA STRUCTURE 41

(1 2 3 1000 4)

USER(16): (remove 1000 data)
(1 2 3 4)

USER(17): data
(1 2 3 1000 4)

USER(18): (setq data (remove 1000 data))
(1 2 3 4)

USER(19): data
(1 2 3 4)

Like append and cons, remove is non-destructive and so does not modify its arguments. As
before, one way to achieve modification with variables is to use setq.

3.2.12 Sorting Lists

The Function sort will sort any Sequence (including, of course, a List), based on comparing
the elements of the Sequence using any applicable comparison Function, or predicate Func-
tion. Because of efficiency reasons, the designers of CL made the decision to allow sort to
modify (“recycle” the memory in) its Sequence argument — so you must always “catch”
the result of the sorting by doing something explicitly with the return-value:

USER(20): (setq data ’(1 3 5 7 2 4 6))
(1 3 5 7 2 4 6)

USER(21): (setq data (sort data #’<))
(1 2 3 4 5 6 7)

USER(22): (setq data (sort data #’>))
(7 6 5 4 3 2 1)

Notice that the comparison Function must be a Function which can take two arguments —
any representative two elements in the given sequence — and compare them to give a T or
NIL result. The “#’” notation is a shorthand way of retrieving the actual Function object
associated with a Symbol or expression (in this case, the < or > Symbol). We will cover
more on this in Section 3.4.

In the above examples, we simply reset the value of the variable data to the result of
the sort, which is a common thing to do. If one wanted to retain the original pre-sorted
sequence, a “safe” version of sort could be defined as follows:

42 CHAPTER 3. THE CL LANGUAGE

(defun safe-sort (list predicate)
(let ((new-list (copy-list list)))

(sort new-list predicate)))

3.2.13 Treating a List as a Set

The Functions union, intersection, and set-difference take two Lists and compute
the corresponding set operation. Because mathematical sets have no notion of ordering,
the order of the results returned by these Functions is purely arbitrary, so you should never
depend on the results of these set operations being in any particular order:

USER(23): (union ’(1 2 3) ’(2 3 4))
(1 2 3 4)

USER(25): (intersection ’(1 2 3) ’(2 3 4))
(3 2)

USER(26): (set-difference ’(1 2 3 4) ’(2 3))
(4 1)

3.2.14 Mapping a Function to a List

If you have one List, and desire another List of the same length, there is a good chance that
you can use one of the mapping Functions. Mapcar is the most common of such Functions.
Mapcar takes a Function and one or more Lists, and maps the Function across each element
of the List, producing a new resulting List. The term car comes from the original way in
Lisp of referring to the first of a List (“Contents of Address Register”). Therefore mapcar
takes its Function and applies it to the first of each successive rest of the List:

USER(29): (defun twice (num)
(* num 2))

TWICE

USER(30): (mapcar #’twice ’(1 2 3 4))
(2 4 6 8)

“Lambda” (unnamed) Functions are used very frequently with mapcar and similar mapping
Functions. More on this in Section 3.4.3.

3.3. CONTROL OF EXECUTION 43

3.2.15 Property Lists

Property Lists (“Plists”) provide a simple yet powerful way to handle keyword-value pairs.
A Plist is simply a List, with an even number of elements, where each pair of elements
represents a named value. Here is an example of a Plist:

(:michigan "Lansing" :illinois "Springfield"
:pennsylvania "Harrisburg")

In this Plist, the keys are Keyword Symbols, and the values are Strings. The Keys in a
Plist are very often Keyword Symbols. Keyword Symbols are Symbols whose names are
preceded by a colon (:), and which are generally used just for matching the Symbol itself
(i.e. typically they are not used for their Symbol-value or Symbol-function).

For accessing members of a Plist, CL provides the Function getf, which takes a Plist
and a Key:

USER(34): (getf ’(:michigan "Lansing"
:illinois "Springfield"
:pennsylvania "Harrisburg")

:illinois)
"Springfield"

3.3 Control of Execution

“Control of Execution” in CL boils down to “Control of Evaluation.” Using some standard
and common Macros, you control which forms get evaluated, among certain choices.

3.3.1 If

Perhaps the most basic Macro for imposing control is the if Macro, which we have already
introduced briefly in Section 3.2.5. The If Macro takes exactly three arguments, each of
which is an expression which may be evaluated. The first is a test-form, the second is a
then-form, and the third is an else-form (which may be left out for a default of NIL). When
CL evaluates the if form, it will first evaluate the test-form. Depending on whether the
return-value of the Test-form is non-NIL or NIL, either the Then-form or the Else-form will
be evaluated.

If you want to group multiple expressions together to occur as part of the Then-form
or the Else-form, you must wrap them in an enclosing block. Progn is commonly used for
this purpose. Progn will accept any number of forms as arguments, and will evaluate each
of them in turn, finally returning the return-value of the last of them (see Figure 3.1).

44 CHAPTER 3. THE CL LANGUAGE

(if (eql status :all-systems-go)
(progn (broadcast-countdown) (flash-colored-lights)

(play-eerie-music)(launch-rocket))
(progn (broadcast-apology) (shut-down-rocket)))

Figure 3.1: Progn used with If

3.3.2 When

In some ways, when is similar to if, but you should use when in cases where you know that
the Else-clause is simply NIL. This turns out to be a common situation. Another advantage
of using when in these cases is that there is no need for progn to group multiple forms —
when simply takes a Test-form then any number of “Then-forms:”

USER(36): (when (eql database-connection :active)
(read-record-from-database)
(chew-on-data-from-database)
(calculate-final-result))

999

USER(37): (when (> 3 4)
(princ "I don’t think so..."))

NIL

3.3.3 Logical Operators

The Logical Operators and and or evaluate one or more expressions given as arguments,
depending on the return-values of the expressions. As we covered in Section 3.2.3, T is
CL’s default representation for “True,” NIL (equivalent to the Empty List) is CL’s default
representation for “False,” and any non-NIL value is “as good as” T as far as “Truth” is
concerned:

USER(38): (and (listp ’(chicago detroit boston new-york))
(listp 3.1415))

NIL

USER(39): (or (listp ’(chicago detroit boston new-york))
(listp 3.1415))

T

In fact what is happening here is that and evaluates its arguments (expressions) one at a
time, from left to right, returning NIL as soon as it finds one which returns NIL — otherwise

3.3. CONTROL OF EXECUTION 45

it will return the value of its last expression. Or evaluates its arguments until it finds one
which returns non-NIL, and returning that non-NIL return-value if it finds one. Otherwise
it will end up returning NIL.

Not takes a single expression as an argument and negates it — that is, if the expression
returns NIL, not will return T, and if the argument returns non-NIL, not will return NIL.
Logically, not behaves identically with the Function null — but semantically, null carries
the meaning of “testing for an Empty List,” while not carries the meaning of Logical
Negation:

USER(45): (not NIL)
T

USER(46): (not (listp 3.1415))
T

3.3.4 Cond

Because the use of “nested” if statements is not appropriate, CL provides the Macro
cond to accomodate this. Use cond in situations when in other languages you might use
a repeated “If...then...else if...else if...else if...” Cond takes as arguments any number of
test-expression forms. Each of these forms consists of a List whose first is an expression
to be evaluated, and whose rest is any number of expressions which will be evaluated if
the first form evaluates to non-NIL. As soon as a non-NIL form is found, its corresponding
expressions are evaluated and the entire cond is finished (i.e. there is no need for an explicit
“break” statement or anything of that nature):

USER(49): (let ((n 4))
(cond ((> n 10) "It’s a lot")

((= n 10) "It’s kind of a lot")
((< n 10) "It’s not a lot")))

"It’s not a lot"

Because T as an expression simply evaluates to itself, a convenient way to specify a “default”
or “catch-all” clause in a cond is to use T as the final conditional expression:

USER(50): (let ((n 4))
(cond ((> n 10) "It’s a lot")

((= n 10) "It’s kind of a lot")
(t "It’s not a lot")))

"It’s not a lot"

46 CHAPTER 3. THE CL LANGUAGE

3.3.5 Case

If you want to make a decision based on comparing a variable against a known set of
constant values, case is often more concise than cond:

USER(51): (let ((color :red))
(case color
(:blue "Blue is okay")
(:red "Red is actually her favorite color")
(:green "Are you nuts?")))

"Red is actually her favorite color"

Note that case uses eql to do its matching, so it will only work with constants which are
Symbols (including Keyword Symbols), Integers, etc. It will not work with Strings.

CL also provides the macros ecase and ccase, which work just like case but provide
some automatic error-handling for you in cases when the given value does not match any
of the keys.

The Symbol otherwise has special meaning to the case Macro — it indicates a “de-
fault,” or “catch-all” case:

USER(52): (let ((color :orange))
(case color

(:blue "Blue is okay")
(:red "Red is actually her favorite color")
(:green "Are you nuts?")
(otherwise "We have never heard of that!")))

"We have never heard of that!"

3.3.6 Iteration

In addition to its innate abilities to do recursion and mapping, CL provides several opera-
tors for doing traditional iteration (“looping”). These include macros such as do, dolist,
dotimes, and the “everything-including-the-kitchen-sink” iterating macro, loop. Dolist
and dotimes are two of the most commonly used ones, so we will cover them here:

USER(53): (let ((result 0))
(dolist (elem ’(4 5 6 7) result)

(setq result (+ result elem))))
22

3.4. FUNCTIONS AS OBJECTS 47

As seen above, dolist takes an initialization-list and a body. The Initialization-list consists
of an iterator-variable, a List-form, and an optional return-value-form (which defaults to
NIL). The Body will be evaluated once with the Iterator-variable set to each element in the
List which is returned by the List-form. When the List has been exhausted, the return-
value-form will be evaluated and this value will be returned from the entire dolist. In other
words, the number of iterations of a dolist is driven by the length of the List returned by
its List-form.

Dotimes is similar in many ways to dolist, but instead of a List-form, it takes an
expression which should evaluate to an Integer. The Body is evaluated once with the
Iterator-variable set to each integer starting from zero (0) up to one less than the value of
the Integer-form:

USER(54): (let ((result 1))
(dotimes (n 10 result)
(setq result (+ result n))))

46

In situations when you want the program to exit early from an iteration, you can usually
accomplish this by calling return explicitly.

3.4 Functions as Objects

3.4.1 Named Functions

When working with CL, it is important to understand that a Function is actually a kind of
Object, separate from any Symbol or Symbol-name with which it might be associated. You
can access the actual Function-object in a Symbol’s Function-slot by calling the Function
symbol-function on a Symbol, like this:

(symbol-function ’+)
#<Function +>

or this:

(symbol-function ’list)
#<Function LIST>

As you can see, the printed representation of a named Function-object contains the Func-
tion’s Symbol-name enclosed in pointy brackets, preceded by a pound sign.

You can explicitly call a Function-object with the Function funcall :

48 CHAPTER 3. THE CL LANGUAGE

USER(10): (funcall (symbol-function ’+) 1 2)
3

USER(11): (setq my-function (symbol-function ’+))
#<Function +>

USER(12): (funcall my-function 1 2)
3

A shorthand way of writing symbol-function is to write #’ before the name of a Function:

USER(10): (funcall #’+ 1 2)
3

USER(11): (setq my-function #’+)
#<Function +>

USER(12): (funcall my-function 1 2)
3

3.4.2 Functional Arguments

“Functional Arguments” are arguments to Functions which themselves are Function-objects.
We have seen this already with mapcar, sort, and funcall:

USER(13): (defun add-3 (num)
(+ num 3))

ADD-3

USER(14): (symbol-function ’add-3)
#<Interpreted Function ADD-3>

USER(15): (mapcar #’add-3 ’(2 3 4))
(5 6 7)

USER(17): (funcall #’add-3 2)
5

The idea of passing Functions around to other Functions is sometimes referred to as higher-order
functions. CL provides natural support for this concept.

3.4. FUNCTIONS AS OBJECTS 49

3.4.3 Anonymous Functions

Sometimes a Function will be used so seldom that it is hardly worth going to the extent
of creating Named Function with defun. For these cases, CL provides the concept of the
lambda, or “anonymous” (unnamed) Function. To use a Lambda Function, you place the
entire Function definition in the position where you normally would put just the Symbol
which names the Function, identified with the special Symbol lambda:

USER(19): (mapcar #’(lambda(num) (+ num 3))
’(2 3 4))

(5 6 7)

USER(20): (sort ’((4 "Buffy") (2 "Keiko") (1 "Judy") (3 "Aruna"))
#’(lambda(x y)

(< (first x) (first y))))
((1 "Judy") (2 "Keiko") (3 "Aruna") (4 "Buffy"))

3.4.4 Optional Arguments

Optional arguments to a Function must be specified after any required arguments, and are
identified with the Symbol &optional in the Argument List. Each optional argument can
be either a Symbol or a List containing a Symbol and an expression returning a default
value. In the case of a Symbol, the default value is taken to be NIL:

USER(23): (defun greeting-list (&optional (username "Jake"))
(list ’hello ’there username))

GREETING-LIST

USER(24): (greeting-list)
(HELLO THERE "Jake")

USER(25): (greeting-list "Joe")
(HELLO THERE "Joe")

3.4.5 Keyword Arguments

Keyword arguments to a Function are basically named optional arguments. They are defined
much the same as optional arguments:

(defun greeting-list (&key (username "Jake")
(greeting "how are you?"))

(list ’hello ’there username greeting))

50 CHAPTER 3. THE CL LANGUAGE

But when you call a Function with keyword arguments, you “splice in” what amounts to a
Plist containing keyword Symbols for the names of the arguments along with their values:

USER(27): (greeting-list :greeting "how have you been?")
(HELLO THERE "Jake" "how have you been?")

USER(28): (greeting-list :greeting "how have you been?" :username "Joe")
(HELLO THERE "Joe" "how have you been?")

Note that with keyword arguments, you use a normal Symbol (i.e. without the preceding
colon) in the definition of the Function, but a keyword Symbol as the “tag” when calling
the Function. There is a logical reason behind this, which you will understand soon.

3.5 Input, Output, Streams, and Strings

Input and Output in CL is done through objects called streams. A Stream is a source
or destination for pieces of data which generally is connected to some physical source or
destination, such as a terminal console window, a file on the computer’s hard disk, or a web
browser. Each thread of execution in CL defines global parameters which represent some
standard Streams:

• *standard-input* is the default data source.

• *standard-output* is the default data destination.

• *terminal-io* is bound to the console (Command Prompt) window, and by default
this is identical to both *standard-input* and *standard-output*.

3.5.1 Read

Read is the standard mechanism for reading data items into CL. Read takes a single optional
argument for its Stream, and reads a single data item from that Stream. The default for
the Stream is *standard-input*. If you simply type (read) at the Command Prompt,
CL will wait for you to enter some valid Lisp item, and will return this item. Read simply
reads, it does not evaluate, so there is no need to quote the data being read. You can set a
variable to the result of a call to read:

(setq myvar (read))

The Function read-line is similar to read, but will read characters until it encounters
a new line or end-of-file, and will return these characters in the form of a String. Read-line
is appropriate for reading data from files which are in a “line-based” format rather than
formatted as Lisp expressions.

3.5. INPUT, OUTPUT, STREAMS, AND STRINGS 51

3.5.2 Print and Prin1

Print and prin1 each take exactly one CL object and output its printed representation to
a Stream, which defaults to *standard-output*. Print puts a space and a newline after
the item (effectively separating individual items with whitespace), and Prin1 outputs the
item with no extra whitespace:

USER(29): (print ’hello)

HELLO
HELLO

In the above example, you see the Symbol HELLO appearing twice: the first time is the
output actually being printed on the console, and the second is the normal return-value of
the call to print being printed on the console by the read-eval-print loop. Print and Prin1
both print their output readably, meaning that CL’s read Function will be able to read the
data back in. For example, the double-quotes of a String will be included in the output:

USER(30): (print "hello")

"hello"
"hello"

3.5.3 Princ

Princ, as distinct from print and prin1, prints its output in more of a human-readable
format, which means for example that the double-quotes of a String will be stripped upon
output:

USER(31): (princ "hello")
hello
"hello"

in the above example, as before, we see the output twice: once when it is actually printed
to the console, and again when the return-value of the call to princ is printed by the
read-eval-print loop.

3.5.4 Format

Format is a powerful generalization of prin1, princ, and other basic printing Functions, and
can be used for almost all output. Format takes a Stream, a control-string , and optionally
any number of additional arguments to fill in placeholders in the Control-string:

52 CHAPTER 3. THE CL LANGUAGE

USER(33): (format t "Hello There ~a" ’bob)
Hello There BOB
NIL

In the above example, t is used as a shorthand way of specifying *standard-output* as the
Stream, and ~a is a Control-string placeholder which processes its argument as if by princ.
If you specify either an actual Stream or T as the second argument to format, it will print
by side-effect and return NIL as its return-value. However, if you specify NIL as the second
argument, format does not output to any Stream at all by side-effect, but instead returns
a String containing what would have been output to a Stream if one had been provided:

USER(34): (format nil "Hello There ~a" ’bob)
"Hello There BOB"

In addition to ~a, there is a wealth of other Format Directives for an extensive choice of
output, such as outputting items as if by prin1, outputting Lists with a certain character
after all but the last item, outputting Numbers in many different formats including Roman
Numerals and English words, etc.

3.5.5 Pathnames

In order to name directories and files on a computer filesystem in an operating-system
independent manner, CL provides the pathname system. CL Pathnames do not contain
system-specific Pathname Strings such as the forward-slash of Unix/Linux filenames or the
backward-slash of MSDOS/Windows filenames. A CL Pathname is basically a structure
which supports a constructor Function, make-pathname, and several accessor Functions,
such as pathname-name, pathname-directory, and pathname-type. The Pathname struc-
ture contains six slots:

• Directory

• Name

• Type

• Device

• Version

• Host

On standard Unix filesystems, only the Directory, Name, and Type slots are relevant. On
MSDOS/Windows filesystems, the Device slot is also relevant. On the Symbolics platform,
which has a more advanced filesystem, the Version and Host slots also have relevance.

3.5. INPUT, OUTPUT, STREAMS, AND STRINGS 53

The constructor Function, make-pathname, takes keyword arguments corresponding to
the six possible slots of the Pathname.

The following is an example of creating a Pathname which would appear on Unix as
/tmp/try.txt:

USER(15): (defparameter *my-path*
(make-pathname :directory (list :absolute "tmp")

:name "readme"
:type "txt"))

MY-PATH

USER(16): *my-path*
#p"/tmp/readme.txt"

As seen in the above example, the :directory slot is technically a List, whose first is
a keyword Symbol (either :absolute or :relative), and whose rest is the individual
directory components represented as Strings.

3.5.6 File Input and Output

Doing file input and output in CL is essentially a matter of combining the concepts of
Streams and Pathnames. You must first open a file, which entails associating a Stream
with the file. CL does provide the open Function, which directly opens a file and asso-
ciates a Stream to it. For a number of reasons, however, generally you will use a Macro
called with-open-file which not only opens the file, but automatically closes it when
you are done with it, and performs additional cleanup and error-handling details for you.
With-open-file takes a specification-list and a body. The Specification-list consists of a
stream-variable (a Symbol) and a Pathname, followed by several optional keyword argu-
ments which specify, for example, whether the file is for input, output, or both. Here is an
example of opening a file and reading one item from it:

(with-open-file (input-stream *my-path*)
(read input-stream))

No extra keyword arguments are required in the Specification-list in this example, since
“read-only” mode is the default for opening a file. In order to write to a file, additional
keyword arguments must be given:

(with-open-file (output-stream *my-path*
:direction :output
:if-exists :supersede

54 CHAPTER 3. THE CL LANGUAGE

:if-does-not-exist :create)
(format output-stream "Hello There"))

3.6 Hash Tables, Arrays, Structures, and Classes

CL provides several other built-in data structures to meet a wide variety of needs. Arrays
and Hash Tables support the storage of values in a manner similar to Lists and Plists, but
with much faster look-up speed for large data sets. Structures provide another Plist-like
construct, but more efficient and structured.

Classes extend the idea of Structures to provide a full object-oriented programming
paradigm supporting multiple inheritance, and Methods which can dispatch based on any
number of specialized arguments (“multimethods”). This collection of features in CL is
called the Common Lisp Object System, or CLOS.

3.6.1 Hash Tables

A Hash Table is similar to what in some other languages is known as an Associative Array.
It is comparable to a single-dimensional array which supports keys which are any arbitrary
CL object, which will match using eql, e.g. Symbols or Integers. Hash Tables support
virtually constant-time lookup of data, which means that the time it takes to look up an
item in a Hash Table will remain stable, even as the number of entries in the Hash Table
increases.

To work with Hash Tables, CL provides the constructor Function make-hash-table
and the accessor Function gethash. In order to set entries in a Hash Table, use the setf
operator in conjunction with the gethash accessor Function. Setf is a generalization of
setq which can be used with places resulting from a Function call, in addition to exclusively
with Symbols as with setq. Here is an example of creating a Hash Table, putting a value in
it, and retrieving the value from it:

USER(35): (setq os-ratings (make-hash-table))
#<EQL hash-table with 0 entries @ #x209cf822>

USER(36): (setf (gethash :windows os-ratings) :no-comment)
:NO-COMMENT

USER(37): (gethash :windows os-ratings)
:NO-COMMENT
T

Note that the gethash Function returns two values. This is the first example we have
seen of a Function which returns more than one value. The first return-value is the value
corresponding to the found entry in the Hash Table, if it exists. The second return-value

3.6. HASH TABLES, ARRAYS, STRUCTURES, AND CLASSES 55

is a Boolean value (i.e. T or NIL), indicating whether the value was actually found in the
Hash Table. If the value is not found, the first return-value will be NIL and the second
return-value will also be NIL. This second value is necessary to distinguish from cases when
the entry is found in the Hash Table, but its value just happens to be NIL.

There are several ways to access multiple return-values from a Function, e.g. by using
multiple-value-bind and multiple-value-list.

3.6.2 Arrays

Arrays are data structures which can hold single- or multi-dimensional “grids” full of values,
which are indexed by one or more Integers. Like Hash Tables, Arrays support very fast
access of the data based on the Integer indices. You create Arrays using the constructor
Function make-array, and refer to elements of the Array using the accessor Function aref.
As with Hash Tables, you can set individual items in the Array using setf:

USER(38): (setq my-array (make-array (list 3 3)))
#2A((NIL NIL NIL) (NIL NIL NIL) (NIL NIL NIL))

USER(39): (setf (aref my-array 0 0) "Dave")
"Dave"

USER(40): (setf (aref my-array 0 1) "John")
"John"

USER(41): (aref my-array 0 0)
"Dave"

USER(42): (aref my-array 0 1)
"John"

The make-array Function also supports a myriad of optional keyword arguments for ini-
tializing the array at the time of creation.

3.6.3 Structures

Structures support creating your own data structures with named slots, similar to, for
example, the Pathname data structure which we have seen. Structures are defined with
the Macro defstruct, which supports many options for setting up the instance constructor
Functions, slots, and accessor Functions of the Structure. For a complete treatment of
Structures, we refer you to one of the CL references or to the on-line documentation for
defstruct.

56 CHAPTER 3. THE CL LANGUAGE

3.6.4 Classes and Methods

Classes and Methods form the core of the Common Lisp Object System (CLOS), and add
full-blown object-oriented capabilities to Common Lisp.

A complete treatment of CLOS is beyond the scope of this booklet, but we will provide
a brief overview. Classes are basically “blueprints” or “prototypes” for Objects. Objects,
in this context, are a kind of structure for grouping together both data and computational
functionality. Methods are very similar to Functions, but they can be specialized to apply
to particular combinations of Object types.

CLOS is a generic function object-oriented system, which means that Methods exist
independently of Classes (i.e. Methods do not “belong to” Classes). Methods can take
different combinations of Class instance types as arguments, however, and Methods can be
specialized based upon the particular combinations of types of their arguments. Simple CL
datatypes, such as Strings and Numbers, are also considered as Classes.

Here is an example of defining a Class and a Method, making an instance of the Class,
and calling the Method using the instance as the argument:

USER(43): (defclass box () ((length :initform 10)
(width :initform 10)
(height :initform 10)))

#<STANDARD-CLASS BOX>

USER(44): (defmethod volume ((self box))
(* (slot-value self ’length)

(slot-value self ’width)
(slot-value self ’height)))

#<STANDARD-METHOD VOLUME (BOX)>

USER(45): (setq mybox (make-instance ’box))
#<BOX @ #x209d135a>

USER(46): (volume mybox)
1000

As seen in the above example, the Class definition takes at least three arguments: a Symbol
identifying the name of the Class, a Mixin-list which names superclasses (none, in this
example), and a List of slots for the Class, with default values specified by the :initform
keyword argument.

The Method definition is very much like a Function definition, but its arguments (single
argument in the case of this example) are specialized to a particular Class type. When we
call the Method, we pass an instance of the Class as an argument, using a normal argument
List. This is unlike Java or C++, where a Method is considered to be “of” a particular
Class instance, and only additional arguments are passed in an argument List.

CL is more consistent in this regard.

3.7. PACKAGES 57

Because normal CL data types are also considered to be Classes, we can define Methods
which specialize on them as well:

USER(47): (defmethod add ((value1 string) (value2 string))
(concatenate ’string value1 value2))

#<STANDARD-METHOD ADD (STRING STRING)>

USER(48): (defmethod add ((value1 number) (value2 number))
(+ value1 value2))

#<STANDARD-METHOD ADD (NUMBER NUMBER)>

USER(49): (add "hello " "there")
"hello there"

USER(50): (add 3 4)
7

3.7 Packages

Typically, Symbols in CL exist within a particular Package. You can think of Packages
as “Area Codes” for Symbols. They are namespaces used within CL to help avoid name
clashes.

Package names are generally represented by Keyword Symbols (i.e. Symbols whose
names are preceded by a colon). ANSI CL has a “flat” Package system, which means that
Packages do not “contain” other Packages in a hierarchical fashion, but you can achieve
essentially the same effect by “layering” Packages. Actually, hierarchical Packages have
been added to Allegro CL as an extension to the ANSI Standard, and may be added to
the ANSI standard at some point. However, the real use of hierarchical Packages is to
avoid name clashes with Package names themselves. You can do this in any case simply
by separating the components of a Package name with a delimiter, for example, a dot:
:com.genworks.books.

In a given CL session, CL always has a notion of the current Package which is stored
in the (dynamic) variable *package*. It is important always to be aware of what the
current Package is, because if you are in a different Package than you think you are, you
can get very surprising results. For example, Functions that are defined in :package-1 will
not necessarily be visible in :package-2, so if you attempt to run those Functions from
:package-2, CL will think they are undefined.

Normally the CL Command Prompt prints the name of the current Package. You can
move to a different Package, e.g. foo, with the toplevel comand :package :foo.

Small programs can be developed in the :user Package, but in general, a large applica-
tion should be developed in its own individual Package.

58 CHAPTER 3. THE CL LANGUAGE

3.7.1 Importing and Exporting Symbols

Packages can export Symbols to make them accessible from other Packages, and import
Symbols to make them appear to be local to the Package.

If a Symbol is Exported from one Package but not Imported into the current Package,
it is still valid to refer to it. In order to refer to Symbols in other Packages, qualify the
Symbol with the Package name and a single colon: package-2:foo.

If a Symbol is not Exported from the outside Package, you can still refer to it, but this
would represent a style violation, as signified by the fact that you have to use a double-colon:
package-2::bar.

3.7.2 The Keyword Package

We have seen many occurences of Symbols whose names are preceded by a colon (:). These
Symbols actually reside within the :keyword Package, and the colon is just a shorthand
way of writing and printing them. Keyword Symbols are generally used for enumerated
values and to name (Keyword) Function arguments. They are “immune” to Package (i.e.
there is no possibility of confusion about which Package they are in), which makes them
especially convenient for these purposes.

3.8 Common Stumbling Blocks

This section discusses common errors and stumbling blocks that new CL users often en-
counter.

3.8.1 Quotes

One common pitfall is not understanding when to quote expressions. Quoting a single
Symbol simply returns the Symbol, whereas without the quotes, the Symbol is treated as a
variable:

USER(6): (setq x 1)
1

USER(7): x
1

USER(8): ’x
X

Quoting a List returns the List, whereas without the quotes, the List is treated as a Function
(or Macro) call:

3.8. COMMON STUMBLING BLOCKS 59

USER(10): ’(+ 1 2)
(+ 1 2)

USER(11): (first ’(+ 1 2))
+

USER(12): (+ 1 2)
3

USER(13): (first (+ 1 2))
Error: Attempt to take the car of 3 which is not listp.

3.8.2 Function Argument Lists

When you define a Function with defun, the arguments go inside their own List:

USER(19): (defun square (num)
(* num num))

SQUARE

But when you call the Function, the argument List comes spliced in directly after the
Function name:

USER(20): (square 4)
16

A common mistake is to put the argument List into its own List when calling the Function,
like this:

USER(21) (square (4))
Error: Funcall of 4 which is a non-function.

If you are used to programming in Perl or Java, you will likely do this occasionally while
you are getting used to CL syntax.

3.8.3 Symbols vs. Strings

Another point of confusion is the difference between Symbols and Strings. The Symbol AAA
and the String "AAA" are treated in completely different ways by CL. Symbols reside in
Packages; Strings do not. Moreover, all references to a given Symbol in a given Package

60 CHAPTER 3. THE CL LANGUAGE

refer to the same actual address in memory — a given Symbol in a given Package is only
allocated once. In contrast, CL might allocate new memory whenever the user defines a
String, so multiple copies of the same String of characters could occur multiple times in
memory. Consider this example:

USER(17): (setq a1 ’aaa)
AAA

USER(18): (setq a2 ’aaa)
AAA

USER(19): (eql a1 a2)
T

EQL compares actual Pointers or Integers — A1 and A2 both point to the same Symbol
in the same part of memory.

USER(20): (setq b1 "bbb")
"bbb"

USER(21): (setq b2 "bbb")
"bbb"

USER(22): (eql b1 b2)
NIL

USER(23): (string-equal b1 b2)
T

Again, EQL compares pointers, but here B1 and B2 point to different memory addresses,
although those addresses happen to contain the same String. Therefore the comparison by
string-equal, which compares Strings character-by-character, rather than the pointers to
those Strings, returns T.

Another difference between Symbols and Strings is that CL provides a number of oper-
ations for manipulating Strings that do not work for Symbols:

USER(25): (setq c "jane dates only lisp programmers")
"jane dates only lisp programmers"

USER(26): (char c 3)
\#e

3.8. COMMON STUMBLING BLOCKS 61

(defun nearly-equal? (num1 num2
&optional
(tolerance *zero-epsilon*))

(< (abs (- num1 num2)) tolerance))

Figure 3.2: Function for Floating-point Comparison

USER(27): (char ’xyz 1)
Error: ‘XYZ’ is not of the expected type ‘STRING’

USER(29): (subseq c 0 4)
"jane"

USER(30): (subseq c (position \#space c))
" dates only lisp programmers"

USER(31): (subseq c 11 (length c))
"only lisp programmers"

3.8.4 Equality

CL has several different predicates for testing equality. This is demanded because of the
many different object types in CL, which dictate different notions of equality.

A simple rule of thumb is:

• Use eql to compare Symbols, Pointers (such as Pointers to Lists), and Integers

• Use = to compare most numeric values

• Use string-equal for case-insensitive String comparison

• Use string= for case-sensitive String comparison

• Use equal to compare other types of objects (such as Lists and single characters)

• For comparing floating-point Numbers which may differ by a very small margin, but
should still be considered equal, the safest technique is to take the absolute value
of their difference, and compare this with an “epsilon” value within a tolerance of
zero. In Figure 3.2 is a simple Function which does this, which assumes that a global
parameter is defined, *zero-epsilon*, as a numeric value very close to zero:

Examples:

62 CHAPTER 3. THE CL LANGUAGE

USER(33): (setq x :foo)
:FOO

USER(34): (eql x :foo)
T

USER(35): (= 100 (* 20 5))
T

USER(36): (string-equal "xyz" "XYZ")
T

USER(37): (setq abc ’(a b c))
(A B C)

USER(38): (equal abc (cons ’a ’(b c)))
T

USER(39): (equal \#a (char "abc" 0))
T

USER(40): (eql abc (cons ’a ’(b c)))
NIL

The last expression returns NIL because, although the two Lists have the same contents,
they reside in different places in memory, and therefore the pointers to those Lists are
different.

Note that several of the Functions which by default use eql for matching will take an
optional keyword argument test which can override this default:

USER(54): (member "blue" ’("red" "blue" "green" "yellow")
:test #’string-equal)

("blue" "green" "yellow")

Recall from Section 3.2.7 that member returns the rest of the List starting at the found
element.

3.8.5 Distinguishing Macros from Functions

Since Macros3 and Functions both occur as the first element in an expression, at first
glance it may appear difficult to distinguish them. In practice, this rarely becomes an issue.

3Special Operators are one other category of operator in CL, which internally are implemented differently
from Macros, but which for our purposes we can consider like Macros.

3.8. COMMON STUMBLING BLOCKS 63

For beginners in the language, the best approach is to make a default assumption that
something is a Function unless you recognize it as a Macro. Most Macros will be readily
identifiable because one of the following will apply:

• It is a familiar core part of CL, such as if, cond, let, setq, setf, etc.

• Its name begins with “def,” such as with defun, defparameter, etc.

• Its name begins with “with-,” as in with-open-file, with-output-to-string, etc.

• Its name begins with “do,” for example dolist and dotimes.

Beyond these general rules of thumb, if you find yourself in doubt about whether some-
thing is a Function or a Macro, you can:

1. Check with on-line reference documentation or in a CL reference book (see the Bibli-
ography in Appendix A)

2. Use the symbol-function Function to ask your CL session, like this:

USER(24): (symbol-function ’list)
#<Function LIST>

USER(25): (symbol-function ’with-open-file)
#<macro WITH-OPEN-FILE @ #x2000b07a>

3.8.6 Operations that cons

Because CL programs do not have to free and allocate memory explicitly, they can be
written much more quickly. As an application evolves, some operations which “cons” can
be replaced by operations which “recycle” memory, reducing the amount of work which the
garbage collector (CL’s automatic memory management subsystem) has to do.

In order to write programs which conserve on garbage collecting, one technique is sim-
ply to avoid the unnecessary use of operations which cons. This ability will come with
experience.

Another technique is to use destructive operations, which are best used only after one
has gained more experience working with CL. Destructive operations are for the most part
beyond the scope of this booklet.

64 CHAPTER 3. THE CL LANGUAGE

Chapter 4

CL as a CASE tool

In the following two chapters, we will illustrate a rudimentary web-based Personal Account-
ing Application, complete with SQL database table definitions and User Interface. We will
implement this application in less than 100 lines of code, using CL and a simple CASE-like
Macro extension language embedded in CL.

4.1 Executable Object Model

First, we will describe the Macro language, which allows us to define Object Classes, their
Methods, and their relationships in a simplified, concise manner. This language captures
many of the central concepts of a general-purpose “Object modeling” language such as the
Unified Modeling Language (UML), with the crucial difference being that the Object model
is directly executable as an application.

In the next chapter, we will layer an HTML-based web user interface on top of the
Object model, making use of Franz Inc.’s “AllegroServe” (CL-based web server) together
with their “HTMLgen” (HTML generation system).

The language described in this chapter allows the developer to work using an Object-
oriented approach called the message-passing paradigm, which is somewhat simplified (and
limited) compared to what pure CLOS can do. However, for some types of problems,
working in the Message-passing style is sufficient and appropriate, and can simplify the
programming process. Remember, when we use Macro extensions on top of CL, we are
working in a superset of CL, so we do not give up any functionality — we always have the
option of dropping back into pure CLOS or CL.

In the Message-passing paradigm of Object-oriented programming, Methods “belong”
to Classes — that is, the Methods of a Class can be defined right along with the Class
definition, as in Java or C++. This is not possible in pure CLOS, since a CLOS Method
may be associated with any arbitrary number of Classes.

Methods which “belong” to particular Classes are also known as messages, thus the
term “Message-passing.”

65

66 CHAPTER 4. CL AS A CASE TOOL

4.2 Knowledge Base

In addition to implementing a Message-passing style, the Macro extension we illustrate in
this chapter also implements some knowledge base features, which mainly consist of caching,
dependency tracking, and a non-procedural style of programming.

Caching means that the return-value of a call to a Method (Message) is automatically
“memoized” by the system, so that if the Method is called again during the same
running session, the system can directly return the value, and does not have to do the
actual computation again.

Dependency Tracking is a necessary complement to Caching — this feature allows the
system to detect if a cached value depends on another value somewhere else in the sys-
tem. This way, if the “depended-upon” value is modified (“bashed,” in KB parlance),
then the cached value is known to be stale and must be recomputed (and re-cached)
the next time it is demanded.

Non-procedural refers to a style of programming, also known as declarative programming,
in which the programmer need not be concerned with the order of evaluation, i.e. there
is no explicit “begin” and “end” to a program. There is just a high-level Object model
which specifies what the solution to a problem is, not procedurally how the problem
is to be solved. The language handles the details of exactly which Methods to call,
and when.

This general concept of a Knowledge Base has seen a multitude of implementations,
mainly in CL. An example of a successful commercial implementation is The ICAD System R©

from Knowledge Technologies International, whose Allegro CL-based language is known
as the ICAD Design Language, or ICAD/IDL.1 ICAD/IDL is specifically geared towards
mechanical engineering and geometric work, and so it has very deep and broad support
for geometric Objects (wireframe, surfaces, and solids), a graphical user interface with
geometric display capability, as well as integrations with various Computer-Aided Design
(CAD) systems, built on top of the basic KB Object description language.

An example of an open-source KB language implementation is the General-purpose
Declarative Language, or GDL, which also implements a cached, dependency-tracked, message-
passing programming style. GDL is intended as a teaching tool and as a substrate for
implementing certain kinds of Object-oriented applications in Common Lisp.

ICAD/IDL is available from Knowledge Technologies International at

http://www.ktiworld.com

as part of their Knowledge Based Organization (KBO) suite. GDL is available in unsup-
ported form through Sourceforge at

1ICAD is not to be confused with AutoCAD, a completely different product from a different company.
And ICAD/IDL is not to be confused with CORBA’s Interface Definition Language, which is also known as
“IDL.”

4.3. IDL AND GDL SYNTAX 67

http://www.sourceforge.net/projects/gdl/

and in a supported package form from Genworks International R© at

http://www.genworks.com

The Personal Accounting example presented in this and the next chapter should function
similarly with either ICAD/IDL or GDL.

4.3 IDL and GDL Syntax

4.3.1 Defpart

Defpart is the basic Macro for defining Classes in IDL and GDL. The original meaning of
“part” refers to physical geometric parts, but here the meaning is extended to include any
kind of Functional Object2. A part definition (Defpart) maps directly into a Lisp Class
definition.

The defpart Macro takes three basic arguments:

• a name, which is a Symbol.

• a mixin-list, which is a List of Symbols naming other Defparts from which the current
part will inherit characteristics.

• a specification-plist, which is spliced in (i.e. doesn’t have its own surrounding paren-
theses) after the Mixin-list, and describes the Object model by specifying Methods,
contained Objects (aggregates), etc. The Specification-plist typically makes up the
bulk of the Defpart.

Here are descriptions of the most common keywords making up the Specification-plist:

Inputs specify information to be passed into the Object instance when it is created.

Attributes are really cached Methods, with expressions to compute and return a value.

Parts specify other Instances to be “contained” within this instance.

Methods are (uncached) Methods “of” the Defpart, and can also take other non-specialized
arguments, just like a normal Function.

Figure 4.1 shows a simple example, which contains two Inputs, :first-name and :last-name,
and a single Attribute, :greeting. As you can see, a defpart is analogous in some ways
to a defun, where the Inputs are like arguments to the Function, and the Attributes are

2A Functional Object in this context refers to an entity which accepts some Inputs and computes some
Outputs, with the Outputs being uniquely determined based on a given set of Inputs.

68 CHAPTER 4. CL AS A CASE TOOL

(defpart hello ()
:inputs (:first-name :last-name)
:attributes
(:greeting (format nil "Hello, ~a ~a!!"

(the :first-name)
(the :last-name))))

Figure 4.1: Example of Simple Defpart

like return-values. But seen another way, each Attribute in a defpart is like a Function in
its own right.

The referencing Macro “the” shadows CL’s “the” (which is a seldom-used type decla-
ration operator). “The” in IDL and GDL is a Macro which is used to reference the value of
other Messages within the same Defpart or within contained Defparts. In the above exam-
ple, we are using “the” to refer to the values of the Messages (Inputs) named :first-name
and :last-name.

4.3.2 Making Instances and Sending Messages

Once we have defined a Defpart such as the example above, we can use the constructor
Function make-part in order to create an instance of it. This Function is very similar to
the CLOS make-instance Function. Here we create an instance of hello with specified
values for :first-name and :last-name (the required Inputs), and assign this instance as
the value of the Symbol mypart:

GDL-USER(16): (setq mypart
(make-part ’hello :first-name "John"

:last-name "Doe"))
#<HELLO @ #x218f39c2>

As you can see, the return value is an Instance of Class hello. Now that we have an
Instance, we can use the Macro the-object to send Messages to this Instance:

GDL-USER(17): (the-object mypart :greeting)
"Hello, John Doe!!"

The-object is similar to the, but as its first argument you must give an expression which
evaluates to a part Instance. The, by contrast, assumes that the part instance is the lexical
variable self, which is automatically set within the lexical context of a Defpart.

For convenience, you can also set self manually at the CL Command Prompt, and use
the instead of the-object for referencing:

4.3. IDL AND GDL SYNTAX 69

(defpart city ()
:attributes
(:total-water-usage (+ (the :hotel :water-usage)

(the :bank :water-usage)))
:parts
((:hotel :type ’hotel

:size :large)
(:bank :type ’bank

:size :medium)))

Figure 4.2: Defpart Containing Child Parts

GDL-USER(18): (setq self
(make-part ’hello :first-name "John"

:last-name "Doe"))
#<HELLO @ #x218f406a>

GDL-USER(19): (the :greeting)
"Hello, John Doe!!"

In actual fact, (the ...) simply expands into (the-object self ...).

4.3.3 Parts

The “Parts” keyword specifies a List of “contained” Instances, where each instance is con-
sidered to be a “child” part of the current part. Each child Part is of a specified Type,
which itself must be defined as a Defpart before the child part can be instantiated.

Inputs to each instance are specified as a Plist of Keywords and Value expressions, spliced
in after the part’s name and type specification, which must match the Inputs protocol of the
Defpart being instantiated. Figure 4.2 shows an example of a Defpart which contains some
Parts. In this example, hotel and bank are presumed to be already (or soon) defined as
Defparts themselves, which each answer the :water-usage Message. The reference chains:

(the :hotel :water-usage)

and

(the :bank :water-usage)

70 CHAPTER 4. CL AS A CASE TOOL

(defparameter *presidents-data*
’((:name

"Carter"
:term 1976)

(:name "Reagan"
:term 1980)

(:name "Bush"
:term 1988)

(:name "Clinton"
:term 1992)))

(defpart presidents-container ()
:optional-inputs
(:data *presidents-data*)
:parts
((:presidents :type ’president

:quantify (:series (length (the :data)))
:parameters (the :data))))

Figure 4.3: Sample Data and Defpart to Contain U.S. Presidents

provide the mechanism to access Messages within the child part Instances.
These child parts become instantiated on demand, meaning that the first time these

instances or any of their Messages are referenced, the actual instance will be created and
cached for future reference.

4.3.4 Quantified Parts

Parts may be quantified , to specify, in effect, an Array or List of part Instances. The
most common type of Quantification is called :series quantification. See Figure 4.3 for
an example of a Defpart which contains a quantified set of Instances representing U.S.
presidents. Each member of the quantified set is fed inputs from a List of Plists, which
simulates a relational database table (essentially a “List of Rows”).

Note the following from this example:

• in order to quantify a Part, the additional Input keyword :quantify is added, with a
List consisting of the keyword :series followed by an expression which must evaluate
to a Number.

• The special Parts keyword :parameters allows you to pass a List of Plists directly as
the Inputs to a quantified set of child parts. This will also work for passing a single
Plist into a non-quantified Part.

4.4. PERSONAL ACCOUNTING APPLICATION 71

• The Keyword :optional-inputs is used, which is a hybrid of :attributes and
:inputs, allowing a default expression as with :attributes, but allowing a value to
be passed in on instantiation or from the parent, as with :inputs. A passed-in value
will override the Default Expression.

4.4 Personal Accounting Application

Now that we have a basic overview of the language, let’s examine some of the Objects
required to implement a rudimentary Personal Accounting Application. The Application
is expected to keep track of Accounts and Transactions, and to compute Balances, Cash
Flows, etc. The Accounts will be Objects which answer the following Messages:

• Name

• Description

• Account Number

• Account Type (income/expense or asset/liability)

• Beginning Balance

• Current Balance

The Transactions represent movements of money from one account to another. Therefore
they are Objects which must answer the following Messages:

• Date

• Source Account

• Target Account

• Payee

• Amount

Now let’s see how these Objects come together in order to compute the desired results.

4.4.1 Persistent Objects

Since this is largely a database application, we can start by looking at which Messages in
our two Defparts might represent columns in a database table:

A basic financial Account should store its Name, Description, Account Number, Account
Type, and Beginning Balance. Its Current Balance is computed (derived) information and
is not required to be stored. A Transaction does not contain derived information for our
purposes. All its Messages are basically columns in a database table.

So let us start by defining some database Objects. Because database table definition
requires some datatype information to be specified in advance, and because we would like to

72 CHAPTER 4. CL AS A CASE TOOL

(deftable account ()
:columns
((:name (:varchar2 100))
(:description (:varchar2 500))
(:acct_number :number)
(:acct_type (:varchar2 30))
(:begin_balance :number)))

(deftable transaction ()
:columns
((:from_acct :number)
(:to_acct :number)
(:trans_date :date)
(:amount :number)
(:payee (:varchar2 500))))

Figure 4.4: SQL Table Definitions

produce more than one Defpart to represent each table, we will use a special definition syntax
for database tables. We have prepared the simple Macro deftable for this purpose, as seen
in Figure 4.4. As you can see, deftable accepts a description of an SQL-style database
table. If you are familiar with Standard Query Language (SQL), you will recognize the data
types in the above definitions, e.g. varchar2 for character strings.

Deftable then processes the description into two Defparts: one representing an instance
of the table itself, and another representing the Rows of the table instance. The “table”
Defpart will contain a quantified set of “Row” Instances. The Values in the individual
Rows are represented by ordinary Messages supported by the “Row” Instances. The Table
Object supports Methods for Inserting and Deleting Rows from the table, and the Row
Object supports Methods for Updating the values in each Row. (Methods, in this context,
are Messages which take arguments in addition to the implicit self argument present in
all Messages).

As a side-effect, the Deftable Macro also communicates through a database connection
Object to a live SQL database, and either

1. Creates the table in SQL if it does not exist

2. Alters the table (at least attempts to alter the table) if it already exists

This second of the possible side-effects represents a convenient way to do schema evo-
lution on the live tables in the database.

4.4. PERSONAL ACCOUNTING APPLICATION 73

(defpart custom-account-sql-row-mixin ()
:inputs
(:transaction-list)

:attributes
(:current-balance
(let ((result (the :begin_balance)))
(dolist (transaction (the :transaction-list) result)

(cond ((eql (the-object transaction :from_acct) (the :gen_id))
(setq result
(- result (the-object transaction :amount))))

((eql (the-object transaction :to_acct) (the :gen_id))
(setq result
(+ result (the-object transaction :amount)))))))))

Figure 4.5: Adding Messages to an Account’s Row Object

4.4.2 Adding Computed Messages

Now we can extend the Account definition to compute the current balance. For this purpose,
we can take advantage of the fact that the “Row” Object generated by deftable will
have been defined to inherit from a (initially empty) custom Class, or “mixin.” If the
SQL table is named ACCOUNT, the Defpart representing Rows in this table will be named
account-sql-row, and the Custom Mixin will be named custom-account-sql-row-mixin.
Therefore, we can redefine the custom-account-sql-row-mixin Class as shown in Figure
4.5 . Instances of the account-sql-row will now answer the :current-balance Message.
The Message is being computed as follows:

1. First notice that :transaction-list is a required Input. This represents a List of
Objects representing all Transactions currently in the database.

2. The :current-balance Message starts by initializing a local variable, result, to the
beginning balance of the Account (remember that the Row Object represents one
particular Account in the Database, i.e. Row in the Account table).

3. Next, an iteration is established which executes once for each transaction in the
:transaction-list, setting the local variable transaction to each Object in this
List.

4. Each time through the body of the dolist, a conditional is evaluated:

• If the current Account Object is the same as the “source” account of the Trans-
action (i.e. the :from acct), the amount is subtracted from the result.

• If the current Account Object is the same as the “target” account of the Trans-
action (i.e. the :to acct), the amount is added to the result.

74 CHAPTER 4. CL AS A CASE TOOL

(defpart personal-accountant ()

:attributes (:transaction-list (the :transactions :row-list))

:descendant-attributes (:transaction-list)

:parts
((:accounts :type ’account-sql-table)
(:transactions :type ’transaction-sql-table)))

Figure 4.6: Simple Container Object for Accounts and Transactions

• If the current Account Object matches neither the “source” nor the “target”
of the Transaction, none of the conditional tests will match, and nothing will
happen for that particular Transaction.

5. Finally, after all transactions have been processed, the dolist will return result,
which will have the correct value.

Note also the following:

• We use the :gen id Message for matching Accounts and Transactions. This is the
default Unique Key for the database table, a column automatically generated by the
deftable Macro.

• We are using the SQL Database just as “dumb” data storage, not relying on it at
all for doing filtering, joining, etc. For very large datasets we will start to use the
database’s indexing and joining capabilities — but for now we can conveniently do
much of our work right here in CL.

4.4.3 Building the Object Hierarchy

Now that we have some basic persistent building blocks, let us put together a simple ap-
plication. At this point the only user interface to the application will be the CL Command
Prompt. In the next chapter, we will attach a simple web-based interface.

At this point we need a “container” Object to hold our collections of Accounts and
Transactions. Figure 4.6 shows a first version of such an Object definition. This part has one
Object for Accounts and one Object for Transactions. It also computes :transaction-list
as the List of all rows from the Transactions table, and specifies this Message as descendant.
Descendant-attributes provides a mechanism for ensuring that this Message will be available
in all descendant parts from the part in which it is defined, as if it had been explicitly passed
as an Input into each of these parts. This way, we are ensuring that :transaction-list

4.4. PERSONAL ACCOUNTING APPLICATION 75

(defpart personal-accountant ()
:attributes
(:net-worth (let ((result 0))

(dolist (account (the :accounts :row-list) result)
(if (eql (make-keyword (the-object account :acct_type))

:asset/liability)
(setq result

(+ result
(the-object account :current-balance))))))

:cash-flow (let ((result 0))
(dolist (account (the :accounts :row-list) (- result))
(if (eql (make-keyword (the-object account :acct_type))

:income/expense)
(setq result

(+ result
(the-object account :current-balance))))))

:transaction-list (the :transactions :row-list))

:descendant-attributes (:transaction-list)

:parts
((:accounts :type ’account-sql-table)
(:transactions :type ’transaction-sql-table)))

Figure 4.7: Container Object with Net Worth and Cash Flow Added

will be available in our Account Row Objects (children of the :accounts), since our custom-
mixin requires :transaction-list as an Input.

Descendant-attributes should be used sparingly, as their overuse can lead to confusing
situations (i.e. Messages coming from unexpected places in the Object hierarchy).

Now, we will add two Messages to our container, one to compute Net Worth and one
to compute Cash Flow. Net Worth is the sum of Balances of all accounts of type “As-
set/Liability,” and Cash Flow is the negation of the sum of Balances of all accounts of
type “Income/Expense” (the sign is reversed so that Income appears positive and Expenses
appear negative).

Figure 4.7 shows our personal-accountant Defpart with these two Messages added.
Each Message is computed in basically the same manner: a dolist is used to iterate
through all accounts, accumulating the balance of each account of the applicable type into
the result.

Now our application consists of one root Object, personal-accountant, with two child

76 CHAPTER 4. CL AS A CASE TOOL

Objects, one for the Accounts and one for the Transactions. These three Objects answer
Messages as follows:

• personal-accountant will answer :net-worth and :cash-flow Messages.

• Each Row Object in account-sql-table will answer a :current-balance Message.

• The Row Objects in each of account-sql-table and transaction-sql-table will
answer an :update! Message (with arguments).

• account-sql-table and transaction-sql-table will each answer :insert! and
:delete! Messages (with arguments).

4.4.4 Interacting with the Model

At this point we have just a CL Command Prompt interface to the system. For purposes
of illustration, we will enter two Rows into the Accounts table and a transaction into the
Transactions table, then query the application for some of our supported Messages:

GENACC(20): (setq self (make-part ’personal-accountant))
#<PERSONAL-ACCOUNTANT @ #x20f678e2>

GENACC(21): (the :accounts :row-list)
NIL

GENACC(22): (the :accounts (:insert!
(list :name "Checking"

:description "ACME National Back Checking"
:acct_number 01
:acct_type "asset/liability"
:begin_balance 500)))

GENACC(23): (the :accounts (:insert!
(list :name "Utilities"

:description "Home Utilities -- electric, etc."
:acct_number 55
:acct_type "income/expense"
:begin_balance 0)))

The two calls to the :insert! Method each added a Row to the database, as well as
updating the current Objects3 so that any dependent Objects or Messages will see the
change immediately:

3It should be mentioned that we have simplified the above examples somewhat — in ICAD/IDL, any
modifications to a model, as with the calls to :insert!, require a bit of extra syntax which we have omitted
because it does not add to the principal point of the example.

4.4. PERSONAL ACCOUNTING APPLICATION 77

GENACC(24): (the :accounts :row-list)
(#<ACCOUNT-SQL-ROW @ #x20f67954> #<ACCOUNT-SQL-ROW @ #x20f67982>)

GENACC(25): (mapsend (the :accounts :row-list) :index)
(1 2)

GENACC(26): (the :accounts (:rows 1) :current-balance)
500

GENACC(27): (the :accounts (:rows 2) :current-balance)
0

The mapsend Function above takes a List of Objects and sends a given Message to each of
them, returning a List of the results. The (:rows 1) and (:rows 2) syntax is a way of
referencing particular members of a quantified set.

Now let us add a transaction, and see that it updates the relevant Messages:

GENACC(28): (the :transactions (:insert!
(list :trans_date "25-aug-00"

:from_acct 1
:to_acct 2
:payee "Detroit Edison"
:amount 75)))

GENACC(29): (the :accounts (:rows 1) :current-balance)
425

GENACC(30): (the :accounts (:rows 2) :current-balance)
75

GENACC(31): (the :net-worth)
425

GENACC(32): (the :cash-flow)
-75

GENACC(33): (the :transactions (:insert!
(list :trans_date "25-aug-00"

:from_acct 1

78 CHAPTER 4. CL AS A CASE TOOL

:to_acct 2
:payee "Michcon Gas"
:amount 125)))

GENACC(34): (the :accounts (:rows 1) :current-balance)
300

GENACC(35): (the :accounts (:rows 2) :current-balance)
200

GENACC(36): (the :cash-flow)
-200

GENACC(37): (the :net-worth)
300

So our main Messages are working, through a simple command-line interface for now. A
well-rounded personal accounting program would, of course, require certain extensions. Here
are a few examples:

• computing cash flow for a specified time period

• allowing expense accounts to have “sub-accounts”

• allowing the creation of budget targets for expense accounts

With a robust Object Model, features such as these can be added and tested in an
incremental manner. We would simply add new Messages and possibly additional Objects
to our Object Hierarchy, building steadily toward the desired functionality.

As new “required functionality” becomes apparent (as it invariably does), our flexible
and extensible Object Model stands ready to comply.

4.5 Conclusion

In about 45 lines of code, we have written a basic runnable account-balancing program,
including the creation of the required SQL database tables and associated Methods for
transacting with the database. Done in pure Common Lisp (i.e. without using any extension
Macros), this application would have taken slightly more code, but still not an unreasonable
amount.

The main objective of the example is to show what really is possible with Common Lisp
by judiciously selecting and/or developing some strategic extension Macros. The Defpart
Macro is but one example of how CL can automate the programming process; many other
approaches certainly exist, and others have yet to be discovered.

Chapter 5

CL as an Internet Application
Server

In this chapter we will extend the personal-accountant Defpart we developed in the
previous chapter. As we left it, the only obvious way to interact with the application was
by evaluating Lisp expressions at a Command Prompt. Now we will convert it into a Web
application, accessible by a web browser (e.g. Netscape or MS Internet Explorer) on any
machine on the network connected to the machine running the CL process.

To accomplish this, we will make use of some readily-available CL-based tools:

AllegroServe is a webserver developed for use with Common Lisp, under open-source
licensing. It is guaranteed to work with Allegro Common Lisp. The main purpose of
AllegroServe is to serve dynamic pages using an html1 generator. Franz Inc.’s stated
goal in developing this module was to make it easy to publish complex web pages and
add a web interface to a Common Lisp application2.

GWL Implements an approach to building Web applications using a tree of dynamic Com-
mon Lisp Objects to represent the tree of pages in a Web application. It runs atop
ICAD/IDL or GDL, and CL-HTTP3 or AllegroServe4.

5.1 AllegroServe and HTMLgen

5.1.1 CL-based Webservers

Traditional webservers work by transmitting prepared static files from a Server computer
over a network to a web browser running on a Client computer. Beyond this, scripts can
be run, as separate processes from the webserver itself, through the Common Gateway

1HTML is “Hypertext Markup Language,” a standard language which can be used for defining the content
and formatting of a web page.

2Referenced from the Allegroserve Home Page at http://allegroserve.sourceforge.net
3CL-HTTP is another CL-based webserver, written by John C. Mallery of MIT, and is available at

http://wilson.ai.mit.edu/cl-http/cl-http.html
4Referenced from the GWL Home Page at http://gwl.sourceforge.net

79

80 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

Interface, or CGI, to enable a web server to generate the contents of a page based on
computed information, or in response to a “fillout-form” submitted by the user.

CL webservers like AllegroServe and CL-HTTP take the concept of dynamically gener-
ated content to a new level by embedding the actual webserver in a running CL process,
and each request is handled by running a Function or Method which responds by sending
output to a Stream connected to the requesting web browser. In this scenario, each client
request is usually handled by a separate thread of execution in the CL process.

5.1.2 Generating HTML with AllegroServe’s htmlgen

AllegroServe includes a special Macro, called simply html, which makes the generation of
HTML output very convenient. Since HTML is already very similar to Lists in structure,
the mapping is straightforward. Here are some examples:

NET.HTML.GENERATOR(26): (html "hello")
hello

NET.HTML.GENERATOR(27): (html (:html "hello"))
<html>hello</html>

NET.HTML.GENERATOR(28): (html (:html (:body "hello")))
<html><body>hello</body></html>

NET.HTML.GENERATOR(29): (html (:html (:body
(:table
:newline
(:tr (:td "hello"))))))

<html><body><table>
<tr><td>hello</td></tr></table></body></html>

NET.HTML.GENERATOR(30): (html (:html (:body
((:table :width "100%")
:newline
(:tr (:td "hello"))))))

<html><body><table WIDTH="100%">
<tr><td>hello</td></tr></table></body></html>

NET.HTML.GENERATOR(31): (setq name "Joe")
"Joe"

NET.HTML.GENERATOR(32): (html (:html (:body
((:table :width "100%")
:newline

5.2. GWL 81

(:tr (:td (:princ name)))))))
<html><body><table WIDTH="100%">
<tr><td>Joe</td></tr></table></body></html>

As you can see, the html macro allows you to write List expressions which contain keywords
corresponding to the usual HTML tags, and it follows a simple set of rules for converting
these expressions into actual HTML. Any kind of normal Lisp expressions are also allowed
within a call to the html Macro (e.g. conditionals, Function calls, iteration, etc.), so you
can compute and generate any kind of required HTML.

Working with the html Macro is much more convenient than working with actual HTML,
not only because you have the full programmatic capabilities of CL, but also because you
have the automatic nesting of the List expressions. There is no need to grapple with named
closing tags (e.g. </TABLE> or </HTML>).

For complete details of working with htmlgen, see documentation in the file htmlgen.html
which is included in the AllegroServe distribution (http://opensource.franz.com).

5.2 GWL

5.2.1 Overview

GWL, or Generative Web Language, designed to work with either ICAD/IDL or GDL (cov-
ered in the previous chapter), consists mainly of a primitive Defpart called base-html-sheet.
To use GWL, you first identify those parts in your Object hierarchy which are to be available
as Web pages in your application. Those parts should then mix in (i.e. inherit from) this
base-html-sheet primitive part, and should define a Method called :write-html-sheet
which generates the actual HTML corresponding to that “page,” or Object.

GWL also supports several built-in Messages to facilitate the creation of hyperlinks
from one “page” (Object) to another, as well as the ability for the user to interact with the
Object hierarchy by submitting values from “fillout-forms.” Form submittals have the effect
of modifying (“bashing”) the Object hierarchy, so that the dependency tracking inherent
in the language will automatically update any dependent elements on other “pages” on-
demand as the user visits those pages.

For a more detailed description of GWL, please see the documentation which accompa-
nies its distribution.

5.2.2 Examples

Figure 5.1 shows an example of a simple part which mixes in base-html-sheet. When this
part is instantiated in a web browser (using a URL like “make?part=hello”), the following
HTML would be returned:

<head><title>Greeting Page</title></head>
<body>Hello, Ben Franklin</body>

82 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

(defpart hello (base-html-sheet)
:optional-inputs
(:first-name "Ben"
:last-name "Franklin")

:methods
((:write-html-sheet
()
(html (:head (:title "Greeting Page"))

:newline
(:body "Hello, "

(:princ (the :first-name))
" "
(:princ (the :last-name)))))))

Figure 5.1: Simple Specialization of Base-html-sheet

This simple example consists of a single root-level page. A typical application will consist of
a tree of pages, which we can represent with :parts contained within the part correspond-
ing to our root-level page. These :parts can have their own :parts, which have their
own :parts, and so on, resulting in a “tree,” or hierarchy, of arbitrary depth, breadth,
and complexity. Figure 5.2 presents an example of our “hello” page with some child parts:
Notice that we have added two :parts to this page, each of which presumably are them-
selves some kind of specialization of base-html-sheet, as well as a call to the Method
:write-child-links. This is a built-in Method of base-html-sheet which automatically
creates hyperlinks pointing to each of the child parts in the page.

When instantiated in the browser, this part now produces the following HTML:

<head><title>Greeting Page</title></head>
<body>Hello, Ben Franklin
<p>
Diary
Finances
</p></body>

The hyperlink (“HREF”) Strings in the above HTML will be recognized by the response
Method in the webserver (generically defined by GWL), and will allow the server to respond
by selecting the correct Object hierarchy and individual Object within that hierarchy. The
:write-html-sheet Method of the appropriate Object Instance will then be used to pro-
duce the actual response page.

5.2. GWL 83

(defpart hello (base-html-sheet)
:optional-inputs
(:first-name "Ben"
:last-name "Franklin")

:parts
((:diary :type ’daily-diary)
(:finances :type ’personal-accountant))

:methods
((:write-html-sheet

()
(html (:head (:title "Greeting Page"))

:newline
(:body "Hello, "

(:princ (the :first-name))
" "
(:princ (the :last-name))
:newline
(:p (the (:write-child-links))))))))

Figure 5.2: Specialization of Base-html-sheet with Child Parts

84 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

5.2.3 Separating the “View” from the Object

Sometimes it is helpful to think of a “core” Object, which computes results, accesses
databases, etc., separate from various “views” on that Object, such as an HTML view,
a plain text view, or perhaps an XML view. One way to achieve this would be to add a
new “writer-method” for each desired view to the main Object. But this would clutter up
the main Object with Methods which may never be needed.

A better approach, supported by ICAD/IDL and GDL, is to associate “writer-methods”
with the core Object through the use of output companions. The details of working with
Companions are beyond the scope of this chapter, but you should be aware that the tech-
nique exists.

Companions allow you to attach Methods to a particular combination of a core Defpart
and a desired output format, for example, the Defpart hello and the output format HTML.

This represents a step beyond the basic Message-passing paradigm, because we are now
associating Methods with two specialized arguments (i.e. the core Defpart and the output
format), rather than just the one specialized argument as in basic Message-passing. Pure
CLOS, of course, allows Methods to be specialized on any number of arguments — so the
use of Companions still only scratches the surface of the full power of CLOS.

5.3 Web-enabling the Personal Accounting Application

Our web-enabled Personal Accounting Application will consist of a single “root-level” web
page which will contain the following elements:

• A hyperlink leading to a Form for Inserting, Updating, and Deleting Accounts

• A hyperlink leading to a Form for Inserting, Updating, and Deleting Transactions

• An HTML Table displaying Current Balances for each Account

• An HTML Table displaying current Net Worth and current total Cash Flow

5.3.1 Standard Database Forms

As our first step, let us prepare the root-level web page containing the two hyperlinks for
our two “fillout-forms.” For this, we will make use of a pre-defined GWL Defpart called
html-sql-table. This Defpart takes a :table-name as its required Input, and will produce
a generic data maintenance form for this table, providing basic Insert, Update, and Delete
capabilities. When instantiated, the html-sql-table Defpart will contain an instance of a
Table Object corresponding to the specified :table-name, accessible through the Message
:table. Therefore, we can produce our initial root-level page using just a slight variation
on the personal-accountant Defpart we prepared in Figure 4.7, as shown in Figure 5.3.
Observe the following about this Defpart, as compared with the one in Figure 4.7:

• We have mixed in (i.e. inherited from) the base-html-sheet Defpart, to enable this
part to be instantiated as an HTML web page.

5.3. WEB-ENABLING THE PERSONAL ACCOUNTING APPLICATION 85

(defpart personal-accountant (base-html-sheet)
:attributes
(:net-worth (let ((result 0))

(dolist (account (the :accounts :table :row-list) result)
(if (eql (make-keyword (the-object account :acct_type))

:asset/liability)
(setq result

(+ result
(the-object account

:current-balance))))))

:cash-flow (let ((result 0))
(dolist (account (the :accounts :table :row-list)

(- result))
(if (eql (make-keyword (the-object account :acct_type))

:income/expense)
(setq result

(+ result
(the-object account

:current-balance))))))

:transaction-list (the :transactions :table :row-list))

:descendant-attributes (:transaction-list)

:parts
((:accounts :type ’html-sql-table

:table-name ’account)

(:transactions :type ’html-sql-table
:table-name ’transaction))

:methods
((:write-html-sheet

()
(html (:head (:title "Genworks Personal Accounting")

(:body (the (:write-child-links))))))))

Figure 5.3: Code for Home Page of Personal Accounting Application

86 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

Figure 5.4: Home Page of Personal Accounting Application

• In conjunction with mixing in the base-html-sheet, we have added a :write-html-sheet
method in order to emit the actual HTML for the part.

• We have changed the types of the :accounts and :transactions to be html-sql-table,
to allow these parts to function as data maintenance forms with hyperlinks leading to
them. Contained within these “fillout-form” parts will be the identical Table Objects
as we had previously, now accessible through the Message :table.

• Anywhere in the Defpart where we had been referring simply to (the :accounts)
or to (the :transactions), which were the Table Objects, we now refer to (the
:accounts :table) or (the :transactions :table), respectively.

Figure 5.4 shows the top level page, which at this point only contains two hyperlinks.
Clicking the “Accounts” hyperlink will display the table of Accounts, as seen in Figure 5.5.

This table of Accounts is generated automatically by the generic html-sql-table Def-
part we are using. This page supports Inserting, Updating, and Deleting the individual rows
in the table. Updating and Deleting is accomplished by clicking form elements or hyper-
links associated with each row, and Inserting is accomplished by clicking an insert-form
hyperlink at the bottom of the page. Figure 5.6 shows the “fillout-form” which results from
clicking this link.

Once a new Account has been added, the table of Accounts looks like Figure 5.7.
Figures 5.8, 5.9, and 5.10 show the parallel set of pages for the Transaction table.

5.3.2 Customizing the Forms

As our application currently stands, inserting and updating Accounts and especially Trans-
actions is not very easy. The user must enter all the data into the forms exactly as it will
be stored in the database table.

For example, Transactions are defined as coming “from” one Account “to” another
account, where the “from” and “to” must be entered in the form of the :gen id index
Numbers. The :gen id is actually intended as a hidden “internal” column of the table,

5.3. WEB-ENABLING THE PERSONAL ACCOUNTING APPLICATION 87

Figure 5.5: Table of Accounts

Figure 5.6: Form for Inserting a New Account

88 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

Figure 5.7: Table of Accounts after Inserting a New One

Figure 5.8: Table of Transactions

5.3. WEB-ENABLING THE PERSONAL ACCOUNTING APPLICATION 89

Figure 5.9: Form for Inserting a New Transaction

Figure 5.10: Table of Transactions after Inserting a New One

90 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

:parts
((:accounts :type ’html-sql-table

:table-name ’account)

(:transactions :type ’html-sql-table
:table-name ’transaction
:columns-and-names
‘(("trans_date" "Date")

("from_acct"
"From Account"
:choices (:from-table :table-object ,(the :accounts

:table)
:key-field :gen_id
:display-field :name))

("to_acct"
"To Account"
:choices (:from-table :table-object ,(the :accounts

:table)
:key-field :gen_id
:display-field :name))

("payee" "Payee")
("amount" "Amount"))))

Figure 5.11: Code to Produce Transaction Entry Form with Selection Lists

not really for human consumption. A human using this program really wants to select
from a List of existing Accounts by name. For this purpose, the html-sql-table Def-
part supports the :columns-and-names :optional-input, as seen in the snippet of the
personal-accountant Defpart in Figure 5.11. The :columns-and-names is a List of Lists,
one for each column in the table. The first of each sublist is the Column name, and
the second is the desired Prompt name. These are followed optionally by the :choices
Keyword, which can specify that the choices for the field come from a column in a related
table.

Note the use of the backquote (‘) in this snippet. This, together with the comma,
is a convenient mechanism for building a literal List, while selectively evaluating certain
elements of it (the elements following the commas are evaluated).

Figure 5.12 shows the updated Form, with selection Lists in place of the old type-in
fields.

Similarly, the Account table contains the field :acct type which is supposed to be a
String with a value of either “income/expense” or “asset/liability.” The user will want

5.3. WEB-ENABLING THE PERSONAL ACCOUNTING APPLICATION 91

Figure 5.12: Transaction Entry Form with Selection Lists for “From” and “To” Accounts

to pick one of these two choices from a List, not have to type the String exactly. This is
accomplished as illustrated in Figure 5.13, which shows just the :accounts part specification
from personal-accountant. This gives a similar result, as seen in Figure 5.14.

Many other customizations are of course possible. But already, with 70 lines of applica-
tion code, we have prepared a functioning web application which handles the fundamental
database table maintenance that we require.

5.3.3 Customizing the Root-level Page with a Report

Looking back at our initial requirements at the beginning of this section, we have yet to place
the Current Balances, Net Worth, and Cash Flow on the root-level page. We can accomplish
this by extending the :write-html-sheet Method of our personal-accountant Defpart.
First we add an HTML table to display the individual Account Balances (one row per
Account). In Figure 5.15 is the relevant portion from the :write-html-sheet Method
after this is done. Note that the value is negated for accounts of type “Income/Expense,”
in order to make Income appear positive and Expenses appear negative.

Finally, we add a two-row HTML table to display the current values for Net Worth and
Cash Flow. Figure 5.16 shows the relevant section of the :write-html-sheet: Method.
Notice the use of the format directive $, which formats Numbers in a normal currency
format (e.g. with two places after the decimal point by default).

The root-level screen now appears as in Figure 5.17

We now have a usable, web-enabled, SQL-database-driven, reasonably maintainable,
highly extensible and customizable Personal Accounting Application, written with approx-
imately 95 lines of application code.

92 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

:accounts :type ’html-sql-table
:table-name ’account
:columns-and-names
‘(("name" "Name")

("description" "Description")
("acct_number" "Number")
("acct_type" "Type"

:choices (:explicit ("asset/liability"
"income/expense")))

("begin_balance" "Beginning Balance")))

Figure 5.13: Code to Produce Account Entry Form with Selection List

Figure 5.14: Account Entry Form with Selection List for Account Type

5.3. WEB-ENABLING THE PERSONAL ACCOUNTING APPLICATION 93

(:p ((:table :border 1)
((:tr :bgcolor "yellow")
(:th "Account Name")
(:th "Account Type")
(:th "Current Balance"))
(dolist (account (the :accounts :table :row-list))
(html
(:tr (:td (:princ (the-object account :name)))

(:td (:princ (the-object account :acct_type)))
(let ((value

(if (string-equal (the-object account :acct_type)
"income/expense")

(- (the-object account :current-balance))
(the-object account :current-balance))))

(html
((:td :align "right")
(format *html-stream* "~$" value)))))))))

Figure 5.15: Displaying Account Balances

(:p ((:table :border 1)
(:tr ((:td :bgcolor "yellow") "Net Worth")

((:td :align "right")
(format *html-stream* "~$" (the :net-worth))))

(:tr ((:td :bgcolor "yellow") "Cash Flow")
((:td :align "right")
(format *html-stream* "~$" (the :cash-flow))))))

Figure 5.16: Displaying Net Worth and Cash Flow

94 CHAPTER 5. CL AS AN INTERNET APPLICATION SERVER

Figure 5.17: Home Page with Basic Reports Added

5.4 Conclusion

This guide has given you a rapid tour of the world of Common Lisp, from the basics of
starting and working with CL, through the fundamental parts of the CL language itself,
and finally building a working application on top of CL. As you begin your journey of
creating your own CL applications, you will experience constant “surprise and delight” as
you discover new ways to use its power to accomplish your problem-solving goals.

Just as CL is an extensible, scalable language, so is the learning process involved. We
hope you now have the confidence and motivation to begin immediately putting CL to work
for you, solving practical, “every day” programming challenges — and the foundation to
move your applications to ever-higher levels.

Appendix A

Bibliography

This Bibliography should also be considered as a Recommended Reading list.

• ANSI Common Lisp, by Paul Graham. Prentice-Hall, Inc, Englewood Cliffs, New
Jersey. 1996.

• Common Lisp, the Language, 2nd Edition, by Steele, Guy L., Jr., with Scott E. Fahlman,
Richard P. Gabriel, David A. Moon, Daniel L. Weinreb, Daniel G. Bobrow, Linda
G. DeMichiel, Sonya E. Keene, Gregor Kiczales, Crispin Perdue, Kent M. Pitman,
Richard C. Waters, and Jon L. White. Digital Press, Bedford, MA. 1990.

• ANSI CL Hyperspec, by Kent M. Pitman. Available at

http://www.xanalys.com

• Learning Gnu Emacs, by Eric Raymond. O’Reilly and Associates. 1996.

• Association of Lisp Users website, many other resources and references, at http://www.alu.org

• Usenet Newsgroup comp.lang.lisp

• Successful Lisp, by David Lamkin, available at

http://psg.com/~dlamkins/left/sl/sl.html

• Franz Website (Commercial CL Vendor), at

http://www.franz.com

• Xanalys Website (Commercial CL Vendor), at

95

96 APPENDIX A. BIBLIOGRAPHY

http://www.xanalys.com

• Symbolics Website (Commercial CL Vendor), at

http://www.symbolics.com

• Digitool Website (Macintosh Common Lisp Vendor), at

http://www.digitool.com

• Corman Lisp Website (Commercial CL Vendor), at

http://www.corman.net

• Genworks International Website (services and pointers to other resources) at

http://www.genworks.com

• Knowledge Technologies International Website, at

http://www.ktiworld.com

• Tulane Lisp Tutorial, available at

http://www.cs.tulane.edu/www/Villamil/lisp/lisp1.html

• Texas A&M Lisp Tutorial, available at

http://grimpeur.tamu.edu/colin/lp/

Appendix B

Emacs Customization

B.1 Lisp Mode

When you edit a Lisp file in Emacs, Emacs should automatically put you into Lisp Mode or
Common Lisp Mode. You will see this in the status bar near the bottom of the screen. Lisp
Mode gives you many convenient commands for working with List expressions, otherwise
known as Symbolic Expressions, or s-expressions, or sexp’s for short.

For a complete overview of Lisp Mode, issue the command M-x describe-mode in
Emacs. Table B.1 describes a sampling of the commands available in Lisp Mode1.

B.2 Making Your Own Keychords

You may wish to automate some commands which do not already have keychords associated
with them. The usual way to do this is to invoke some global-set-key commands in the
.emacs file (Emacs’ initialization file) in your home directory. Here are some example entries
you could put in this file, along with comments describing what they do:

1Some of these commands are actually available in Fundamental mode as well

Keychord Action Emacs Function
C-M-space Mark sexp starting at point mark-sexp
M-w Copy marked expression kill-ring-save
C-y Paste copied expression yank
C-M-k Kill the sexp starting at point kill-sexp
C-M-f Move point forward by one sexp forward-sexp
C-M-b Move point backward by one sexp backward-sexp
M-/ Dynamically expand current

word (cycles through choices on
repeat)

dabbrev-expand

Table B.1: Common Commands of the Emacs-Lisp Interface

97

98 APPENDIX B. EMACS CUSTOMIZATION

;; Make C-x & switch to the *common-lisp* buffer
(global-set-key "\C-x&" ’(lambda() (interactive)

(switch-to-buffer "*common-lisp*")))

;; Make function key 5 (F5) start or visit an OS shell.
(global-set-key [f5] ’(lambda() (interactive) (shell)))

;; Make sure M-p functions to scroll through previous commands.
(global-set-key "\M-p" ’fi:pop-input)

;; Make sure M-n functions to scroll through next commands.
(global-set-key "\M-n" ’fi:push-input)

;; Enable the hilighting of selected text to show up.
(transient-mark-mode 1)

B.3 Keyboard Mapping

If you plan to spend significant time working with your keyboard, consider investing some
time in setting it up so you can use it effectively. As a minimum, you should make sure
your Control and Meta keys are set up so that you can get at them without moving your
hands away from the “home keys” on the keyboard. This means that:

• The Control key should be to the left of the “A” key, assessible with the little finger
of your left hand.

• The Meta keys should be on each side of the space bar, accessible by tucking your
right or left thumb under the palm of your hand.

If you are working on an XWindow terminal (e.g. a Unix or Linux machine, or a PC
running an X Server such as Hummingbird eXceed) you can customize your keyboard with
the xmodmap Unix command. To use this command, prepare a file called .Xmodmap with
your desired customizations, then invoke this file with the command

xmodmap .Xmodmap

Here is an example .Xmodmap file for a PC keyboard, which makes the Caps Lock key
function as Control, and ensures that both Alt keys will function as Meta:

remove Lock = Caps_Lock
keysym Caps_Lock = Control_L

B.3. KEYBOARD MAPPING 99

add Control = Control_L

keysym Alt_L = Meta_L Alt_L

For PCs running Microsoft Windows, the Windows Control Panel should contain options
for customizing the keyboard in a similar manner.

100 APPENDIX B. EMACS CUSTOMIZATION

Appendix C

Afterword

C.1 About This Book

This book was typeset using an IBM Thinkpad 1451i running Red Hat Linux and Allegro
Common Lisp Professional Edition, using a Lisp-based markup language. For the printed
output, the Lisp-based markup language generated LATEX code and was typeset using LATEX
by Leslie Lamport, which is built atop TEX by Donald Knuth.

C.2 Acknowledgements

I have received inspiration and instruction from many enabling me to write this book. I
would like to thank, in no particular order, John McCarthy, Erik Naggum of Naggum Soft-
ware and comp.lang.lisp, John Foderaro of Franz Inc., Greg Burek, Jeff Moffa, Steve Seippel,
and Mark Geoffrey of Ford Motor Company; Stanley Knutson, Garreth Evans, David Howe,
Brian Grogan, and the rest of the staff at Knowledge Technologies International; Professor
John Laird who taught me CL in college; John Mallery and Paul Graham, who taught me
that CL is the platform to be using for server applications, James Russell, Andrew Wolven,
Dan Fagan, Wuinnie Jimenez, Vassilios Theodoracatos, Craig Lienard, Tom Johnson, and
many others whom I am sure I am overlooking here. I would especially like to thank my
father, David J. Cooper Sr., Lisa Fettner, Dr. Sheng-Chuan Wu, and Scott Smith for re-
viewing and commenting on the manuscripts, Peter Karp from Stanford Research Institute
for creating the original outline, and Hannu Koivisto for helping to improve the PDF out-
put. “Thank you” to my fiancée Kai Yan, for putting up with my antics while I was writing
this (and in general). I would also like to thank Fritz Kunze of Franz Inc. for telling me to
“go write a book.”

C.3 About the Author

David J. Cooper has been Chief Engineer with Genworks International since November
1997. His principal activity is working with large manufacturing companies, helping them
with their transformation into Knowledge-based Organizations (KBO’s). He has led in-
struction courses in all aspects of KBE, including of course CL, at General Motors, Visteon

101

102 APPENDIX C. AFTERWORD

Automotive, Raytheon Aircraft, Ford Motor Company, Knowledge Technologies Interna-
tional, and others. Prior to his career with Genworks, Mr. Cooper worked with Ford Motor
Company, mostly on deployment of CL-based systems in the field of mechanical engineering
and manufacturing. He also has software development experience in the CAD and database
industries. He received his M.S. degree in Computer Science from the University of Michigan
in 1993, and holds a B.S. in Computer Science and a B.A. in German from Michigan as well.
His current interests include promoting the use of CL for all kinds of server applications.

Index

Allegro CL, 5
AllegroServe, 65, 79
American National Standards Institute, 1
and, 44
anonymous Functions, 49
ANSI Common Lisp, 1
append, 39
aref, 55
argument lists

function, 59
arguments

optional, 49
to a function, 27

arrays, 55
character, 29

Association of Lisp Users, 5
Associative Array, 54
Attributes, 67
AutoCAD

not be be confused with ICAD, 66
Automatic Memory Management, 2

B2B, iii
backquote, 90

used with comma, 90
base-html-sheet, 81
batch mode, running CL in, 14
bioinformatics, iii

C, 27
C++, iii, 27
C#, iii
caching, 66
car, 42
CASE, 2
case, 46
ccase, 46
CGI scripts, 1

CL, 1
data types, 29

CL environment
Installing, 5

CL Packages, 14
CL-HTTP, 79
Classes, 56
CLOS, 56
CLtL2, 1
comma

used with backquote, 90
Common Lisp, 1

ANSI, 1
Common Lisp Object System, 56
Common Lisp, the Language, 2nd Edi-

tion, 1
Companions

output, 84
comparison Function, for sorting, 41
Computer-aided Software Engineering, 2
cond, 45
cons, 40
consing

avoidance, 63
control string for format, 51
Custom Mixin, 73

data mining, iii
data types, CL, 29
Defclass, 56
Defmethod, 56
defparameter, 40
Defpart, 67
defstruct, 55
defvar, 40
Deleting, 72
dependency tracking, 66

103

104 INDEX

destructive operators, 63
do, 46
Doctor Strangelove, 27
document management, iii
dolist, 46
dotimes, 46
Dynamic Redefinition, 2
dynamic scope, 34
Dynamic Typing, 2, 29

E-commerce, iii
ecase, 46
elements of a List

accessing, 35
Empty List, The, 36
epsilon

zero, 61
eql, 59
equal, 59
equality, 59
evaluation

turning off, 28
evaluation rules, 25
executable object model, 65
expression evaluation, 25

Floating Point, 29
format, 51
Format Directives, 52
Franklin

Ben, 81
Function

calling, 25
Functional Arguments, 48
Functions

anonymous, 49
predicate, 36

Functions as Objects, 47
funding

unlimited
over, iii

garbage collector, 63
GDL, 66
General-purpose Declarative Language, 66
generic function, 56

global variables, 32
Gnu Emacs, 8
Graham

Paul, 2
Guy Steele, 1
GWL, 79

hash tables, 54
hierarchy

Object, 74
HTML, 79
html-sql-table, 90
HTMLgen, 65
Hypertext Markup Language, 79

ICAD Design Language, 66
ICAD/IDL, 66
IDL

ICAD, 66
if, 37
infix, 27
input

using read, 50
Inputs, 67
Inserting, 72
Integers, 29
intersection, 42
iteration, 46

Java, iii, 27
Java Virtual Machine, 1
John McCarthy, 1

knowledge base, 66

lambda, 49
Let, 33
lexical scope, 34
Linux, 5
Lisp, 1

Common, 1
ANSI, 1

List, 1
adding single elements to, 40
appending, 39
part of

getting, 39

INDEX 105

Property, 43
removing elements from, 40
sorting, 41
treating as a Set, 42

Lists, 30
logical operators, 44
loop, 46

Macro, 31
make-array, 55
make-instance, 56, 68
make-part, 68
make-pathname, 52
mapcar, 42
mapping, 42
McCarthy

John, 1
member, 38
message-passing, 65
messages, 65
Methods, 56, 67

specialization of, 56
Mixin

synonym for Superclass, 56
MS Internet Explorer, 79
multithreading

dynamic scope useful for, 34

Netscape, 79
NIL, 36
non-procedural, 66
not, 45
null, 36, 45
Numbers, 29

Object Management Group, 2
object model

executable, 65
Objects, 56

container, 74
hierarchy, 74
persistent, 71
root, 75

OMG, 2
open, 53
operating system, Lisp-based, 1

operating systems
Linux, 5
Lisp-based, 5
Symbolics

filesystem, 52
Unix

filesystem, 52
operators

logical, 44
Optional arguments, 49
or, 44
output companions, 84

Package, 14, 57
Packages

CL, 14
Parts, 67, 69

quantified, 70
pathname-directory, 52
pathname-name, 52
pathname-type, 52
pathnames, 52
Paul Graham, 2
people resources

needed to support expectations, iii
Perl, iii, 1, 2, 27
Plist, 43

of Symbol, 30
postfix, 27
predicate, 41
predicate Functions, 36
prefix, 25, 27
prin1, 51
princ, 51
print, 51
Property List, 43
Python, iii, 27

quoting, 58

Ratios, 29
read, 50
read-eval-print, 25
remove, 40
rest of a List, 35
return, 47

106 INDEX

root, 75
rules

expression evaluation, 25

scheduling, iii
schema evolution, 72
scope

dynamic, 34
lexical, 34
variable, 30

self, 68
set operations, 42
set-difference, 42
setf, 54, 55
setq, 33, 40
shared memory space, 1
sort, 41
special variables, 32
SQL, 72
SQL database, 65
Standard Query Language , 72
Steele

Guy, 1
Strangelove

Doctor, 27
Stream, 51
Streams, 50
string-equal, 59
Strings, 29, 59
structures, 55
subseq, 39
Superclass

synonym for Mixin, 56
symbol, 26
Symbolics Common Lisp, 5
Symbols, 29, 59

exporting, 58
importing, 58

T
as default representation for Truth, 36

tables
hash, 54

test-expression forms
for cond, 45

the, 68

threads, 1
toplevel, 25
turning off evaluation, 28
Typing

Dynamic, 29

UML, 65
Unified Modeling Language, 65
union, 42
Unix, 52
Updating, 72

variables
global, 32
special, 32

With-open-file, 53

